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Abstract

In twentieth century the quantum theory of physics has been a fascinating
playground to study the nature of electromagnetic radiations and matter. In this subject,
the forces on atom by light have received much theoretical and experimental attention
during past many years, not only because of interest in the basic atom field interaction,
but aiso for the measurement of an unknown staie of ciecvmagnetic field which poscs
an interesting question in it. The measurement of the cavity field had gained a very high
attention because of the possibility of the quantum computers, quantum teleportation,
quantum cryptography, dense coding and many more.

A project of Pakistan Science Foundation entitled “Quantum State Measurement”
is taken to keep our research in this area. There are many schemes presented for the
quantum state measurement. One of the most widely used ways is the reconstruction of
Wigner function. We worked in this area and presented new schemes for the
reconstruction of Wigner function of the field from the recovered-photon statistics of the
field. Photon statistics can be recovered in no of ways. In this report we present five
different new schemes for the measurement of photon statistics of the field. These are
based on Deflection of atomic beam from the cavity field in Raman-Nath regime,
Electromagnatically  induced transparency, Resonance florescence, Ramsey
interferometry, Autler-Towns time dependent spectroscopy, and Deflection of atomic
beam in Bragg’s regime.

In the atomic beam deflection in Raman-Nath regime the momentum distribution
of the atoms after their interaction during the passage through the quantized cavity field is
used for its reconstruction. We displace the photon statistics of the cavity field and
reconstruct the Wigner function of the Schrodinger-cat state. In the Electromagnatically
induced transparency we use a three level atom, the upper two levels were driven by the
quantized field. The absorption spectrum of the probe beam gives the information about
the photon statistics while in Resonance Florescence, instead of three level atoms we use
two level atoms driven by the field. If the driving field is position dependent then we find
the position of the atoms passing through the cavity in Sub wavelength domain. In
Ramsey interferometry we proposed to measure the joint photon statistics in two cavities
containing entangled field. The cavities are placed in between the two Ramsey fields and
two level atoms pass through these cavities and two Ramsey zone. In this setup the atoms
goes under a dispersive phase shift while their passage through the off resonant entangled
cavities. By measuring the internal states of the atoms we can reconstruct the photon
statistics and then the Wigner function. The Autler-Towns spectroscopy is the reverse of
EIT where the upper two levels of a three level atoms are driven by the field. Instead of
measuring absorption spectrum we measure the spontaneous emission spectrum. In
another scheme of atomic beam deflection in Bragg regime we measure the momentum
distribution of atoms after passing through the two cavities containing entangled field.
The momentum states contain the information about the joint photon statistics.

Apart from these schemes we also proposed another schemes for the
reconstruction of Wigner function using tomography by phase sensitive amplification of
the field. Three level atoms of two photon processes are passed through the cavity
amplifying the field to be measured. The two cases are discussed here. One in which the



phase of the atoms are controlled outside the cavity and the other in which the phase is
controlled inside the cavity. The complete quadrature distribution is obtained by
measuring the quadrature for the different phases. The inverse Radon transformatlon is
then employved to reconstruct the original quantum state.

Most of these schemes are based on the atom field interaction and the role of
phase and intensity of the field. In one of our study we consider spontaneous emission in
a four-level atomic system driven by three fields. It is shown that, by controlling the
phase and the amplitude of the driving fields, a wide variety of spectral behavior can be
obtained ranging from a very narrow single spectral line to six spectral lines of varying
widths. '

We also present an exciting application of new emerging field of Quantum
Informatics i.e., Quantum Teleportation. We consider the teleportation of entangled two-
particle and multiparticle states and present a scheme for the teleportation that may be
suitable for both entangled atomic states or field states inside high Q cavities.
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Paper # 1

Measurement of Wigner function via atomic beam deflection in
Raman-Nath regime

Introduction .

The concept of a quantum state has always played a key role in discussions
treating the foundations of quantum theory. Each physical quantity can be represented by
a Hermitian operator, which is called an “observable'. A measurement of this observable
leaves the system in an eigenstate of the operator. A single measurement performed on a
quantum system reveals a certain aspect of its state, and it will not uncover the quantum
state completely. However, if we know how to determine the whole set of potentialities,
the quantum state can be recovered. It is a basic assumption of the quantum theory that an
infinite ensemble of system contains all the information about the quantum system. The
quantum state of the radiation field is described completely by the state vector for a pure
state and by the density operator for a more general mixed state. Equivalent descriptions
of the quantum state can be formulated in terms of the quasiprobability distributions such
as P-representation, Q-representation or the Wigner distribution function. These
distributions, which do not have all the properties of a classical probability distribution,
allow the evaluation of various correlation functions of the field operators, using the
methods of classical statistical mechanics. For example, the Wigner distribution function
affords the evaluation of symmetrically ordered correlation functions of the creation and
destruction operators of the field. In recent years, a large class of the states of the
radiation field has been studied. Some of them such as a squeezed state or a Schrodinger-
cat state exhibit interesting features in their quantum statistical properties for example
they may have oscillatory photon distributions. Several methods have been proposed to
measure quantum state of light as well as quantum state of matter. One method that
allows us to perform measurements on wave function is the so-called tomographic
method. In this ‘method, the distribution for the electric field quadrature amplitudes are
measured via optical homodyne measurements and the Wigner distribution function of
the radiation field is constructed from these measurements via Radon transformation.
This method has been realized experimentally. The other methods, which allow us to
determine the quantum state of an electromagnetic field in a cavity or quantum state of
matter, are based on the fundamental interaction of atoms with the cavity field. These
include methods based on dispersive atom-field coupling in a Ramsey method of
separated oscillatory fields, atomic beam deflection and the conditional measurements on
the atoms in a micromaser setup. A class of schemes for the measurement of the quantum
state of the radiation field involves the measurement of the absorption and emission
spectrum in a driven system. The atom deflection method uses momentum distribution of
atoms in order to reveal the quantum state of the light inside the cavity. In this case, the
atom serves as atool that probes a quantum state of radiation field.

Freyberger and Herkommer proposed a scheme to measure the quantized cavity
field. Their proposed scheme utilizes resonant two-level atoms. The atoms are prepared
in coherent superposition of atomic states, before interacting with the cavity field, which



is to be measured. They put a narrow slit of width much smaller than the wavelength of
the cavity field in front of standing wave (of the cavity field). Under this approximation,
sin(kx) dependence can be replaced by linear kx ' dependence in thé interaction
Hamiltonian. They have studied the momentum distribution of the atoms and found the
photon statistics of -the cavity field by the recursion relation w_m=a/(w_m-1)*. The
scheme works well for the case where the probability amplitudes of photon statistics
never go to zero. On the other hand it has limitations that w_m cannot be found when the
probability amplitude (w_m-1)* becomes equal to zero. Such is, for example, in the case
of Schrodinger-cat state, which has an oscillatory photon statistics. Another scheine
proposed by Schneider also takes into account the atomic deflection method for the
reconstiuction of the quantized cavity field. They make use of a strong coherent reference
field traveling orthogonally with respect to the cavity mode. The strong coherent field
plays the similar role as the local oscillator in the homodyne tomography. While their
passage through the cavity, the atomic probe interacts for a short time with the cavity and
the reference field. They measure the momentum distribution of the atoms for different
phases of the classical field and reconstruct an s-parameterized quasiprobability
distribution of the field. ‘

Contrary to Freyberger and Herkommer, the method we propose do not require
the superposition of atomic states, rather than this we inject a coherent state inside the
cavity which causes the displacement of the original photon statistics of the field. Our
proposed scheme has advantage of using mixed state instead of pure state. Furthermore,
the scheme probes a beam of two-level atoms in their ground state for the measurement
of Wigner function of the cavity field. We observe that the momentum distribution of the
atoms, after interacting with the cavity field, contains enough information for the
reconstruction of photon statistics and hence the Wigner function of the cavity field. The
cavity field is however coupled to a resonant classical oscillator for the measurement of
Wigner function. The injection of coherent state causes a displacement of the initial state
of the cavity field in phase space. The role of this coupling in the quantum state
- measurement has been discussed in. The Wigner function is reconstructed in a
completely different way and the mathematical framework is more simpler. We derive
expression for the Wigner function of the cavity field in terms of displaced photon
statistics. We also discuss the role of the derived expression used to reconstruct the
photon statistics of the cavity field. Both the resonant and off-resonant atom-field
interaction is discussed. We recover the photon statistics of the Schrodinger-cat state and
also reconstruct the Wigner function for the same. It is very interesting to note that in
non-demolition interaction of the off-resonant case, the mathematics is much simpler. .

Wigner function of the radiation field

In order to measure the Wigner function of the cavity field we assume that there is
~ a probability p(m) of m photons inside the cavity. A classical oscillator is connected to
the cavity so that it injects a coherent state inside it. The injection of the coherent state
causes the-displacement of the field. We recall the definition of the quasiprobability
distribution, which belongs to a general class of phase-space distribution in the form of s
parameters. By the order of operators we mean the normal order, antinormal order and
symmetric order. The s=1,-1, or 0 for normal-, antinormal-, and symmetric-order,



respectively. For s=0 one obtains the Wigner distribution function and for s=-1, and 1, Q-
representation and P-representation, respectively. The Wigner function of the cavity field
can be found directly if the displaced photon statistics is known. In this paper, we first
find out the photon statistics and then the Wigner characteristic function of the cavity
field with the help of displaced photon statistics.

Resonant atom-field interaction

We consider the same scheme as that of Freyberger and Herkommer with two
modifications: (a) we inject two-level atoms in the standing wave cavity field in their
ground state and (b) we displace the photon statistics of the cavity field by injecting a
coherent state for the measurement of the Wigner function. The transition of the two-
level atoms is resonant with the single mode quantized cavity field. A narrow slit placed
in front of the cavity allows the atoms to collimate on a small region of the cavity field.
Further, we consider the interaction in Raman-Nath regime where the kinetic energy term
- in Hamiltonian can be neglected. The atoms are transmitted through the opening of the
slit. We approximate that the opening is very small as compared to the wave length of the
cavity field and is centered around x=0. Due to this approximation we replace the usual
sin(kx) dependence of the standing wave of cavity field by a linear kx dependence. We
obtain the set of coupled differential equations for density matrix clements and solve
using the method of first finding the eigen values and then using them for the solution of
coupled differential equations. We have supposed that the photon statistics of the cavity
field is p(m), and the atoms are injected in their ground state. This in turn makes the
initial condition that the initial probabilities of all the density matrix elements other than
the ground state are zero.

The equations of motion of the density matrix elements are solved subject to
initial conditions. In order to measure the momentum distribution of the atoms, for the
proposed experiment, we take the Fourier transform from position space to momentum
space in normalized co-ordinates. The atomic states, the field states and the position
states of the atoms are entangled at this stage. We are interested in the momentum
distribution of the atoms and hence do not bother about the internal states of the atoms
and the cavity field states. For the measurement of the momenturn of atomic probe, we
take the trace over the field states and the internal states of the atoms, which lead to the
probability of the momentum distribution on the detection screen. As an example, while
measuring photon statistics of the cavity field we take the normalized Gaussian
distribution of the atoms at the slit. We take the example of the Schrodinger-cat state. We
recover the photon statistics, which shows good agreement with the original one. We note
that when the value of ““kappa” is increased, the peaks in the momentum distribution
spectrum resolve. We recover the photon statistics of the cavity field with the help of
resolved spectrum of the momentum distribution. For the reconstruction of Wignér
function of the cavity field, we inject a coherent state inside the cavity, which displaces
the original photon statistics of the field in phase space. This displaced photon statistics
of the cavity field is recovered from the momentum distribution using the same method
as discussed above. We reconstruct the Wigner function of the cavity field after finding
the displaced photon statistics. The photon distribution of the Schrodinger-cat state after
the injection of coherent state alpha is reconstructed. We take the contour plot of the




original Wigner function and reconstruct it. As we begin to increase the value of “kappa”,
the Wigner function becomes closer and closer to the original one. This behavior of the
recovery of Wigner function is just like the same as the recovery of photon statistics.

Off-resonant atom field interaction

In this section we discuss the situation where the standing wave field, inside the

cavity, encodes information in the center of mass momenta of the off-resonant out going
atoms in Raman-Nath regime. Again we suppose a quantized field in a cavity with a slit
in front of it. A beam of two-level atoms having detuning “Delta” interacts with the
cavity field. For the Raman-Nath regime, the transverse motion of the atoms during
interaction is ignored which allows us to drop the kinetic energy term in the Hamiltonian.
The issue involved in this section is essentially used for analyzing quantum non-
demolition measurement. For the sake of simplicity, we use the effective Hamiltonian in
our calculations. In this case, the off-diagonal density matrix elements are absent.
Furthermore, the equations of motion for density matrix elements of the excited and
ground state atoms are independent of each other, thus we can formally integrate them to
get the result. The supposition, that the atoms are in ground state and they are highly
detuned with the cavity field leads us to conclude that they remain in ground state after
the interaction with the cavity field. Following the same procedure as in the case of
resonant atom-field interaction, we take the Fourier transform of the equation from
position space to momentum space in normalized co-ordinates. While we propose to
focus the atomic beam 1in the mid way between node and anti-node of the standing wave
cavity field. We use the small operning of the slit as compared to the wavelength of the

standing wave cavity field and choose the same initial condition as described in the -

resonant atom-field interaction. We get the momentum distribution of the atomic probe
by taking the trace over the field and atomic states.

In the present case, the peaks .of the momentum distribution become resolved at
very small value of “kappa” as compared to the resonant case. We reconstruct the photon
statistics of the Schrodinger-cat state. For the case of small “kappa” the peaks of the
momentum distribution are not fully resolved which causes the partial recovery of the
photon statistics. The situation is more favorable if we consider relatively higher value
for “kappa”, where the photon statistics is fully recovered. For the recovery of the Wigner
function, we displace the photon statistics of the cavity field by injecting the coherent

state from local classical oscillator. The displaced photon statistics is recovered from the.

momentum distribution, and is then used to reconstruct the Wigner distribution function
of the cavity field.

Results and Discussions

We have recovered the photon statistics of the cavity field in case of Schrodinger-

cat state for both the resonant and off-resonant case. The graphs are taken for initial -

Gaussian distribution of the atoms at the slit. First, while considering the resonant atom-
field interaction, we note that when “kappa” is increased from 25 to 45 gradually, the
peaks in the momentum distribution spectrum begin to resolve. The opening of the slit
has the reverse behavior on the momentum distribution spectrum, i.e., as we decrease the
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width of the slit, the more strength of the coupling is needed. We have used the limit that
the slit has smaller width as compared to the wavelength of the cavity field. This allows
us to replace the sin(kx) dependence by linear kx dependence. We use slit width 1/4 of
the wavelength of the cavity field, which is a valid approximation under the existing
limit. One can find the photon statistics of the cavity field with the help of the resolved
spectrum of the momentum distribution. Adopting the same procedure we recover the
photon statistics of the cavity field. For kappa=25 the peaks of the momentum
distribution are not fully resolved which causes the partial recovery of the photon
statistics of the cavity field. Although the positions of the peaks in recovered photon
statistics match with the original but the heights remain different. The photon statistics is
fully recovered when kappa=45 where the peaks of the momentum distribution are fully
icouived. For the cace nf afforeconant atom-field interaction, we need smaller values of
“kappa” as compared to the resonant case and are enough to resolve the peaks in
momentum distribution. The values used for the slit opening and the photon statistics of
the cavity field are same as they were used in the case of resonant atom-field interaction,
but here we need just kappa=10 for the best reconstruction of the photon statistics as
discussed earlier in the previous section. : :

In order to recover the Wigner function, we displace the photon statistics of the
cavity field by injecting the coherent state by a local classical oscillator. We recover the
Wigner function of the cavity field for resonant atom field interaction. It has recovered
completely for kappa=45. However, for lower values of “kappa”, the partial recovery of
the Wigner function is observed. We also reconstruct the Wigner function of the cavity
field for the off-resonant atom-field interaction. In the off-resonant case for “kdppd”—l()
we get the full recovery of the Wigner function.

. In conclusion we have proposed a scheme for the reconstruction of the photon
statistics and hence for the Wigner function of the quantized cavity field for both the
resonant and off-resonant atom-field interaction. We observe that in case of off-resonant
atom field interaction a small value of “kappa” is sufficient to observe the resolved peak
spectrum in momentum distribution of out going atoms: While on the other hand, we
need relatively large value of “kappa” for the case of resonant atom-field interaction. The
advantage of the presented scheme is that it works well for the case of mixed state also.
The parameters chosen for the reconstruction of the photon statistics and the Wigner
function are attainable in current state of art.  *

Paper # 2

Quantum state tomography using phase-sensitive amplification
Introduction

Quantum state measurement has been a subject of great interest in recent years.
As all the knowable information of a quantum system are contained in the density matrix
of the system, so the measurement of the density matrix elements will completely
characterize the given quantum state. The Wigner function of a quantum state bears a one
to one-correspondence with the density matrix of the state. Once the Wigner function of a
quantum state is known then the corresponding density matrix elements of the state can




be worked out by employing the Wigner formula. On the measurement side, a balanced
homodyne detector measures the linear combination of the creation and the annihilation
operators of a quantized field. This linear combination of creation and annihilation
operators is also termed as the generalized or rotated quadrature of the field and the phase
of this quadrature is given by the phase of the local oscillator in the balanced homodyne
detection scheme. Vogel and Risken have shown that the quasiprobability distributions
such as P, Q, and Wigner function bear a one to one correspondence with the generalized
quadrature distribution function. From a set of measurements of the generalized
quadrature amplitude in the balanced homodyne detection scheme, the quadrature
distribution can be known and hence by tomographic imaging of this distribution, the P,
Q, and the Wigner function can be obtained. Following the same scheme, Faridani and
later Mlynek have experimentally measured the quantum state of the radiation field.
Recently, some other methods have also been proposed for the measurement of quantum
state of the radiation field. These include methods based on absorption and emission
spectroscopy, the conditional measurements on the atoms in a micromaser, dispersive
atom-field coupling in Ramsey method of separated oscillatory fields beside some others.
In some recent studies, it is shown that the measured quadrature distribution becomes

smoothed due to the finite detection efficiency. As a result, instead of Wigner function

smoothed quasiprobabilities are constructed.

In this paper, we propose a scheme for the measurement of quantum state of the
radiation field using two-photon CEL. During the amplification through a phase-sensitive
amplifier, there is no noise in the quadrature of interest and all the noise is fed into the
conjugate quadrature. Therefore, the quantum information remains intact in one
quadrature phase of the field and may be extracted out of it for the construction of
quantum state of the field. In order to construct the Wigner function of the quantum state,
we require a set of distribution functions for quadrature values. To obtain noise free
- amplification for different quadrature phases, we prepare the amplifier in different
phases, accordingly. We have calculated ‘the quadrature distributions for any arbitrary
quantum state after its amplification through a phase sensitive amplifier. The distribution
function of the noise free quadrature is then used to construct the Wigner function of the
quantum state using quantum tomography. We apply this model to a Schrodinger-cat
state and discuss the reconstruction of the corresponding Wigner function after its
amplification through a two-photon CEL. Our proposed method is insensitive to detector
efficiency which poses serious problems in observing the non-classical features
associated with the quantum state. In a recent paper, we have shown that the quantum
interferences associated with a Schrodinger-cat state can be observed using phase-
sensitive linear amplification. It may be pointed out that the phase-sensitive amplification
of the Schrodinger-cat state and the resulting non-classical characteristics during the
amplification process are discussed in the references.

Measurement of the Quantum state using tWo-photon CEL
We consider a two-photon phase sensitive linear amplifier, which consists of

three-level atoms in cascade configuration. The atoms are initially prepared in a coherent
superposition of upper most and lower most levels. We assume that such atoms are

injected at a random injection rate inside the cavity where they interact with the field. It is
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assumed that the cavity field is resonant with the atomic transitions. We write the master
equation for the reduced density matrix as the following Fokker-Planck equation for the
Wigner function. A solution of this equation yields the evolution of the Wigner function
for any arbitrary initial quantum state. Here we look at the measurement of the quadrature
distribution for the amplified quantum state. A complete distribution can be given by the
quadrature distribution. Such distributions have recently been measured employing
quantum optical tomography. The quadrature distribution for the amplified field can be
obtained from the Wigner function. The solution indicates a one to one correspondence
between the phase of the atomic coherence and the phase of the field quadrature. In order
to reconstruct the Wigner function of the ‘initial quantum state, we need a set of
distribution function for different values of theta varying from O to pi.

The Wigner function can be constructed by amplifying the signal such that there
is no noise in the desired quadrature and all the noise is fed into the conjugate quadrature.

- To obtain the noise free amplification, we prepare the atoms in a coherent superposition

with a particular phase. The atoms are then injected inside the cavity where they amplify
the initial quantum state. The noise free quadrature can be obtained by adjusting the
phase of the local oscillator. To find the complete set of distributions, we prepare the
amplifier for a set of values of atomic coherent superposition phases ranging from 0 to
2pi and obtain noise free amplification for the desired quadratures.

Once the quadrature distributions of' the amplified signal are measured in
balanced homodyne measurement, then the complete Wigner function is determined by
carrying out the inverse Radon transformation familiar in tomographic imaging. For
sufficiently large squeezing, we obtain the same original state for any arbitrary value of

the gain parameter. This shows that the proposed scheme allows us to fully reconstruct

the original quantum state after its amplification through a phase-sensitive linear
amplifier. However, an appropriate rescaling of the measured distribution is required. As
an example, we consider the Schrodinger-cat state. It is clear that for sufficiently large
squeezing, and for any arbitrary value of the gain parameter, we obtain the ngner
function for the initial Schrodinger-cat state, which is quite interesting.

Results and discussion

The Wigner function shows two Gaussian hills at the location of two coherent
states and oscillations on the conjugate axis due to the superposition of two coherent
states. This is the well known behavior associated with the Schrodinger-cat state. It is
shown that the well known oscillations due to the Schrodinger-cat state vanish when it is
amplified through a phase insensitive amplifier. However, for r=1 and 2 the oscillations
start appearing which is quite interesting. For strong enough squeezing, we almost fully
recover the Wigner function corresponding to initial Schrodinger-cat state. These results
confirm our assertion that amplifying the signal with the help of a phase-sensitive linear
amplifier allows us to fully reconstruct the original quantum state. The Wigner function is

-reconstructed by taking the inverse Radon transform, once the quadrature distributions

are measured after amplification through two-photon CEL. The quadrature distributions
can be measured using balanced homodyne detection scheme. The parameters in the
experiment should be adjusted such that field leakage through the end mirror dogs not
occur during the amplification process.




In conclusion, we propose a scheme to measure the quantum state of the radiation
field. The technique is based on amplifying the signal with the help of a two-photon CEL
such that there is no noise in the quadrature of interest. Our scheme is insensitive to
problems associated with the detector inefficiencies. In a recent paper Lenohardt and Paul
have also proposed an interesting scheme based on antisqueezing the field with respect to
the desired quadrature using degenerate optical parameter amplifier that also allows to
overcome the problem of detector efficiency.

Paper # 3

Quantum Teleportation of an Entangled State
Introduction :

The notions of coherent superposition and entanglement in quantum mechanics lie
at the conceptual foundation of quantum mechanics as evidznt through fundamentals
contributions like Bell's inequalities and Greenberger-Horne-Zeilinger (GHZ) equalities.
These novel concepts are finding interesting and useful applications in the field of
quantum computing and quantum information. One of the key problems in quantum

communication is the transmission of a quantum state from one observer to another and

to keep the received state exactly the same as that sent while no information carrier needs
to move. This can be accomplished in two steps. First, the sender "disassembles”
information of a quantum state into two parts, one of which is sent through a quantum
channel run by the non-local correlation between two entangled quantum entities and the
other is sent through a classical channel. Second, the receiver "reconstructs” the state on
the basis of the information from both the quantum and classical channels. Because in
this process a quantum state to be transmitted is destroyed in one place and later it is
reconstructed in another place, this transmission is termed as teleportation of a quantum
state. Bennett proposed a scheme for the teleportation of an unknown quantumn state from
one observer to another through duel Einstein-Podolsky-Rosen (EPR) and classical
channels. Since this proposal, a- number of experimentally feasible schemes have been
suggested for the teleportation of two-level atomic states and field states for two-
dimensional states to N-dimensional states. Most of these schemes rely on methods based
on cavity quantum electrodynamics in which two identical high-Q cavities are initially
prepared in an entangled state. Quantum teleportation was experimentally verified by
producing pairs of entangled photons by the process of parametric down conversion.
Recently a scheme has been presented which exploits the cavity decay for teleportation of
atomic state of an atom trapped in a leaky cavity. Beside these schemes of discrete
variables much progress has also been made for quantum teleportation of states of
dynamical variables with continuous spectra. The teleportation of a coherent state of the
radiation field and. teleportation of superposition of amplitudes have also been reported.
All these schemes are for the teleportation of single qubit states. In many potential
applications of quantum computing, such as factorizing a very large number or searching
an unordered quantum database, one needs the system of many qubits states. It is
therefore an interesting question whether we can teleport a multi qubit state. In this paper,
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we present a scheme for the teleportation of two-particle entangled state from a pair of
high Q cavities to another pair of high Q cavities using methods based on cavity quantum
electrodynamics. This scheme is then generalized for the teleportation of N-qubits field
State.

Quantum teleportation of entangled state

We consider the teleportation of a two qubits entangled state of the radiation field
in two separated high Q cavities to another pair of high Q cavities. It may be pointed out
that this scheme corresponds to the teleportation of entangled two-level atomic states also
as the atomic entanglement can be transferred to the two cavities by passing them through
the two cavities with pi pulse. The teleportation of state can be carried out in three steps.

In the first step, we prepare two pairs of cavities in entangled states. Passing a
two-level atom initially in the excited state through the two resonant cavities can do this.
The interaction times of atom with two cavities are chosen such that we have a pi/2 pulse
in the first cavity and a pi pulse in the second cavity. Initially the two cavities are taken in
vacuum and two level atoms in excited state. When atom has undergone a pi/2 pulse in
first cavity, the second cavity is still empty and the atom-field system is in a state which
corresponds to a linear superposition with equal weights of atomic states correlated to
zefo and one photon, respectively. If atom is still in excited state after leaving first cavity,
it will, with unit probability, be transferred to ground and leave a photon in second cavity.
If it emits a photons in first cavity and-exit it in ground level, it will be unaffected by its
coupling with the vacuum in second cavity in ground state. Thus atom always exits from
second cavity in ground, while the field is left in the entangled state. Similarly we prepare
another pair of cavities in entangled state.

The second step of the teleportation is the measurement of Bel! states. There are
number of ways for the determination of number of photons inside the cavities. We
propose to use Ramsey Interferometry. In this scheme we consider two-level  atoms
initially prepared in ground state and which are off resonant with the radiation field inside
the cavities. The cavities are placed between two classical microwave fields. When atom
passes from first zone with a microwave field tuned to atomic frequency, it is prepared in
a coherent superposition of states. This atom is then passed through the two selected
cavities with the same- interaction time in each cavity. During the passage through the
cavities, a.phase shift proportional to the photon numbers in the two cavities is introduced
as a phase of the state b. The atom is then passed through the second zone again resonant.
The interaction time and the coupling parameters are chosen such that a->(a+b)/sqrt{2}
and b->(a-b)/sqrt{2}. It is however clear that a measurement of the atom would reduce
the fields inside the cavities to states with only appropriate number of total photons in the
two cavities. The first atom is sent through the two cavities with interaction time pi in
each cavity. It follows that if the atom is found in the excited state, the total number of
photons in the two cavities is even. If the atom is detected in state b then the total number
of photons in the two cavities is odd. In the next step we make measurement in the
cavities only with same interaction time. We consider two two-level atoms initially in
their ground states. One of the atoms is sent through the cavity B_{1} and the other
through cavity B_{2}. After the passage, the atomic internal states a and b are mixed by a
classical field. A subsequent detection of these atoms introduces phase factors. By a



similar procedure the photon can be removed from the cavity and the resulting cavity
field state will have phase factors according to the final outcome of the atomic state. The
resulting state can have different but known phase factors between the constituent states.
The net effect is equivalent to a transformation to a different basis. Next we make
measurements in the cavities in order to determine the phase factors. We can summarize
from above that if the order of detection of first two atom is the same as last two then we
have j_{1}=0 and j_{2}=0. If the detection of atomic states are same for first and third
atom and detection of fourth atom is reversed w.r.t. second atom then j {1}=0 and
ji_{2}=1. If the detection of atomic states are same for second and fourth atom and
detection of third atom is reversed w.r.t. first atom then j_{1}=1 and j {2}=0. If the
order of detection of atomic states for third and fourth atom are reversed with respect to
the first and second atom respectively, thenj {1}=1andj {2}=1.

In the final step of the teleportation, we transform this state into the original state.
Transformation involves two steps. One is the removal of phases and the other is an
appropriate transformation of photon numbers. First we consider the transformation of
phase only. An atom in a superposition state is passed through the cavity C_{2} only in
such a way that the ground state picks the phase while the excited state does not pick any
additional phase. If the atom is detected in ground state after the passage through cavity
C_{2} then the state (A_{1}A_{2}) is recovered, If atom is detected in state a then repeat
the process until the atom is detected in b.

In order to recover the original state, we should interchange the state between 0
and.1 photon in cavity C_{2}. For this purpose, we pass a two level atom in its ground
state through cavity C_{2} with a pi pulse followed by its passage through a classical
field again with a pi pulse (a=> b and b-> a) and finally through an empty cavity C_{2}
such that the atom in excited state leaves the cavity in ground state while leaving 1
photon inside the cavity and the atom in ground state leaves the cavity in the ground state
with no photon inside the cavity. This leads to the field states in the cavities in entangled
state and the teleportation is complete. ]

Teleportation of n-qubit field state

After giving a scheme to teleport 2-qubit state, we would like to generalize this
scheme for N-qubits state. These N entangled pair of cavities can be prepared as
mentioned earlier by passing two-level atoms initially in excited state through the two
resonant cavities and by setting pi/2 pulse and pi pulse respectively in the two cavities.
We now make measurement of the 2"{2N} basis states of the system. It has 2N
parameters, N parameters correspond to phase, while the remaining N parameters
“correspond to the photon numbers inside the cavities. Thus the state can be determined in
two sets of measurement, the first determining the set of the relative phases. For the
determination of photon numbers we use Ramsey interferometry. Detection of atom
either in the excited state or in the ground state makes the probable outcomes of total N
values. We then send second atom in ground state with same interaction time, which
reduces the probable outcomes to furiher half. Similarly we continue the procedure. A
detection of atom either in the excited state or in the ground state completely determines
the values of outcomes.
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For the determination of phase factors we follow the same procedure as for 2-
qubit state earlier. We send N two-level atoms initially in ground state one by one
through the cavities. After the passage through the cavity a classical field mixes the
atomic internal states. A subsequent detection of these atoms introduces phase factors
yielding possible outcomes of atomic states. Each combination has 2N outcomes of
atomic states, N outcomes each for evacuation of B_{n} and A_{n}. If all the outcomes
of first N are reversed with all the outcomes of last N of that combination then we have
all j equal to 1. This completes the procedure of measuring the Bell states.

First we consider the transformation of phase only. It depends upon the value of j.
If all j are O, then we have to do nothing and original state is recovered. However if any
j_{n} among N walues of i i< 1 then it has additional phase with it. For the removal of this
phase we send a two-level atom in a coherent superposition of states through the cavity in

state is recovered otherwise we have to repeat the process until it is detected in b. If there
are m values of j that are equal to 1 out of N values of j then we pass m atoms in coherent
superposition of states one by one from those m cavities and detect the atom in ground
state. If all the j are 1 then we pass N atoms in (a + b)/sqrt{2} from all N cavities and
detect atoms in ground state.

Next we consider the transformation of photon numbers in the cavities. This
transformation depends upon the values of k. If all the k are O then we have to do nothing -
and the original state is recovered. However if any k_{n} among N values of k is 1, then
we have to change 0 and 1 photon from cavity C_{n}. For this purpose we pass a two
level-atom in its ground state through cavity C_{n} with a pi pulse followed by its
passage through classical field again with a pi pulse. Finally the atom passes through an
empty cavity C_{n} such that the atom in excited state leaves the cavity in ground state
while leaving 1 photon inside the cavity and the atom in ground state leaves the cavity in
ground state with no photon inside the cavity. This leads the field states in the cavities in
the entangled state and the teleportation is complete. If there are m values of k that are
equal to 1 out of N values then we repeat the same process as above by sending m two-
level atoms one by one in ground state from each m cavity and proceed further as
mentioned earlier till the completion of the process. If all the k are 1 then we pass N
atoms in ground state from all N cavities followed by a classical field that mixes a,and b
as a>b and b—>a and finally through N empty cavities. This completes the
transformation process and hence the teleportation of N -qubit state.

Conclusions and results
We have presented a scheme for the quantum teleportation of a 2-qubits entangled

state from a pair of cavities at the sender's end to another pair of cavities at the receiver's
end. The scheme employs atomic interaction with high Q cavities. We need two

‘entangled states of two particle each for the teleportation of two particle entangled state.

Sending one particle of each entangled state to sender and other particle to receiver is
sufficient to teleport the entangled state of two-qubits. This scheme is then generalized
for the teleportation of N-qubits entangled state in N high Q cavities. For this purpose we
need N entangled states of 2-qubits each. Sending one particle of each entangled state to
sending station and other particle of that state to receiving station is enough for the
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teleportation process. The proposed scheme of teleportation consists of three steps. The
first step involves preparation of quantum entangled states bctween two high Q cavities.
The second and third steps involve optical Ramsey interferometry and single photon’
transfer. All these require controlled interaction times between atoms and cavities,
negligible cavity loss and no spontaneous decay during the whole teleportation process.
Controlling the interaction time in the cavities can easily be achieved by properly setting,
through Stark field adjustment, the times during which atom is resonant with each. About
the spontaneous decay we propose the Rydberg atom in circular states with principle
quantum number approx 50. They have a long radiative life time (30 ms) and a very
strong coupling to radiation. A negligible cavity loss is also required during the whole
‘process of teleportation. Cavity life times for high Q cavities should be long enough as all
the interactions of atom with cavities should be completed before the-cavity-dissipation.
High quality factors of such cavities and control of atomic beams during the whole
teleportation process may pose limitations on the suggested scheme.

Paper # 4

Amplitude and Phase Control of Spontaneous Emission
Introduction |

Spontaneous emission in atomic systems arises due to the interaction of atoms
with the environmental modes. It is an interesting area of research to consider various
means and systems to modify and control the spontaneous emission spectrum. We can
control the fluorescence spectra by placing an atom in a frequency dependent reservoir, -
by placing the atoms in microwave cavities, or near the edge of photonic bands gaps. For
atoms in free space, atomic coherence and quantum interference are the basic
mechanisms for controlling the spontaneous emission. A control of spontaneous emission
in atomic system via quantum interference and atomic coherence results in a number of
novel phenomena such as lasing without ' inversion, electromagnetically induced
transparency, correlated spontaneous emission laser, absorption cancellation and
enhancement of the index of refraction with no absorption. The quenching of
spontaneous emission in an open V-type atom was studied. Phase dependent effects in
spontaneous emission spectra in a Lambda-type atom were presented. Recently
Paspalakis and Knight proposed a phase control scheme in a four level atom driven by
two lasers of the same frequencies, where the relative phase of the two laser was used to
get partial cancellation, extreme linewidth narrowing and total ‘cancellation in the
spontaneous emission spectrum. In these calculations, parallel dipoles for the two
transitions were assumed. However, orthogonal dipoles for the two transitions with small
energy separation are easy to be found in nature. Therefore, it is worth to consider the
spectral linewidth narrowing and other effects for the case of two orthogonal dipoles, by
controlling one relative phase and keeping another relative phase constant.

In this paper we present another scheme for four-level atom in which we can
control the spontaneous emission by the amplitude and the phase of the driving fields. In
our scheme, the quantum coherence is generated by a microwave field instead of the
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sharing of the vacuum modes by the two transitions. The proposed scheme requires three
driving fields but is more convenient in its experimental realization. We present
analytical results for the spontaneous emission spectrum of a four-level atom. The upper
two levels are closely spaced and are driven by microwave field. These two levels are
coupled with a third level via two coherent fields and decay to the fourth level. All the
interactions are assumed to be resonant. We study the various effects of the dynamical
variables namely the amplitudes or, more precisely, the Rabi frequencies and carrier
phases of the driven fields on the spontaneous emission spectrum. We predict six peaks
spectral behavior, which are sensitivc to these variables and their control results in
extreme partial cancellation and exireme linewidth narrowing. The linewidih narrowing
—is seen inthecentral-poaltz of the two sets of dressed-states originating from slow decay
rates. This is in agreement with the work of Zhou and Swain where they found linewidth
narrowing in one of the dressed-states nearby the enching condition in the context of
resonance fluorescence of a closed V-type atom. In this paper we assume that the
transition frequency between the upper two levels is large as compared to their decay
rates. This approximation allows us to neglect the quantum interference term in the
equations of motion for the probability amplitudes. Our system is therefore independent
~of the alignment of the dipole moments. The trapping conditions is, however, not
physically achievable in this approximation.

Model

We consider a system of four-level atom interacting with three driving fields.
These fields resonantly couple the transitions al - b, a2 - b, and al - a2. The upper levels
al and a2 decay to the lower level c via interactions with the vacuum field modes. We
assume the coupling constants to be real for the sake of simplicity. If the matrix elements
are orthogonal, there is no interference between the decay paths al - ¢, and a2 - ¢, and if
the matrix elements are parallel, there is maximum interference. To analyze the
spontaneous emission spectrum we assume the atom to be initially prepared in the state b.

The spontaneous emission spectrum consists of two parts. Each part corresponds
to three peaks associated with three dressed-states, which is composed. We neglected the
interference terms between the two sets of dressed-states corresponding to the two bare-
states due to large separation between them. The spectrum therefore consists of six peaks.
In any situations of interest, the interference terms occurring in the spectrum equation
have negligible contributions. We examine the condition for trapping in this system. In
order to have a non-vanishing steady-state population in the upper states of the system,
the constant term of its characteristic equation is set to zero.

Results and discussion

Our system reduces to the usual form of Autler-Townes scheme where the
spontaneous emission spectrum is split in doublet, when the atom is-initially prepared in
the state a2 and the Rabi frequencies and the decay rates are equal to zero. If the atom is
initially prepared in the coherent superposition of the upper two level and the decay rates
are non-zero there are four peaks in the spectrum originated from dynamical stark
splitting of the upper two levels. The variation of the relative phase of the pump and
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driving lasers result in a similar effect as the one reported recently. The spectrum
contains two major parts due to the two bare upper states. Each part contains three terms:
corresponding to three peaks associated with the three dressed-states in each. The
equation therefore leads to a spectral behavior consisting of six peaks. The interference
terms have negligible contributions. We consider the effects of the dynamical variables
on the spontaneous emission spectrum. The variation of the phase associated with the

microwave field influences the spontaneous emission spectrum efficiently. In the .

spectrum all the terms, except the central terms, are. The plot for these values shows an
extremely suppressed central peak and enhanced side peaks. Furthermore, for the two

to their maximum when phi is varied from 0 to pi /2. In this case, the plot shows a
suppressed central peak and equally enhanced side peaks for the one bare-state and vice
versa for the second. When phi is further varied from pi /2 to pi, the new spectrum is just
the mirror inversion. We note, that the peaks height varies with phi, however there is no
appreciable change in the position of the spectral lines on the frequency axes. This
behavior is in agreement with the coherently driven three-level Lambda-type atom of
Martinez. The enhancement around pi/2, 3pi/2 and strong suppression around (), pi of the
central peaks is in accord with the work of Paspalakis and Knight reported recently where
they used the relative phase of two lasers of the same frequencies to control the three
peaks spontaneous emission spectrum in a four levels atom.

The shape of spontaneous emission spectrum is strongly influenced by the-
variation of the Rabi frequencies. For instance, when the Rabi frequency Omega3, is
reduced to 0.1 and phi =0, the contributions of the central terms are negligible. This is
also evident from the plot that the central peaks are suppressed extremely and the side
peaks are enhanced, moreover, the height of one side peak is slightly larger than the
other. The central terms still remain negligible when phi is varied from O to pi /2. We find
an extremely suppressed central peak but equally enhanced side peaks. When phi is
further varied from pi /2 to pi, the new spectrum is just the mirror inversion and we get
the mirror inversion if phi is varied to 3 pi/2. The decrease (increase) of the Rabi
- frequency Omega3, depopulates (populates) the central dressed-states of the two bare-
states and therefore, for the optimum value of the Rabi frequency, the spontaneous decay
rates become negligible (maximum).

It is worthwhile noting that the height of the central peaks increase and the side
- peaks decrease, with the decrease of the Rabi frequencies. In addition, the width of the
central peaks gets extremely narrow for the low value of the Rabi frequencies whereas
the side peaks are suppressed almost completely. The plot shows extremely suppressed
side peaks and equally enhanced central peaks. Moreover, -a remarkable spectral
narrowing is also seen. By varying phi from O to pi, one of the central terms increases
while the other decreases. This is also clear from the plot that the central peaks is
enhanced with the height of a peak is larger than the other. When is further varied from

pi/2 to pi, the new spectrum is just the mirror inversion and we get the mirror inversion if

1s varied to 3pi/2. We note that width of the lines emitting from the central dressed-states
become extremely narrow when the Rabi frequencies are further reduced. This spectral
narrowing is associated with the slow decay rates. The behavior agrees with Zhou and
Swain in obtaining the linewidth narrowing of one of the dressed-states nearby the
quenching condition in the context of resonance fluorescence of a closed V-type atom.
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In summary, we have shown that by chosing appropriate parameters fer the
amplitude and the phase of the driving fields we can obtain a very wide variety of
spectral behavior ranging from a very narrow spectral line to upto six spectral lines of
varying widths. The present system is very easily experimentally realizable.

Paper # 5

Measurement of Photon Statistics via Electromagnetically
Induced Transparency

Introduction

Electromagnetically induced transparency (EIT) was first observed by Harris.
Since then this effect has been studied intensively both theoretically and experimentally.
The theoretical studies assume the driving field to be classical. In this paper we study EIT
by a quantized driving field inside a cavity and show that the absorption spectrum
provides a direct means of measuring the photon statistics of the field. This method of
measuring the photon statistics has the advantage that the photon statistics of the
radiation field can be directly measured from the spectrum without resorting to
- cumbersome numerical manipulations of the experimental data. In addition, the proposed
method is insensitive to the detector efficiency, which poses serious problems in
observing non-classical characteristics of the field. The diagonal elements of the density
operator with respect to the Fock state give the photon distribution function. The photon
distribution for many fields may demonstrate novel non-classical features such as an
oscillatory behavior in the case of single-mode squeezed vacuum state or the
Schrodinger-cat state. It is a problem of recent interest to experimentally observe such
non-classical features of the quantum state of the radiation field. Quantum state of the
field is also determined by using optical homodyne tomography, which uses measured
distributions of electric field quadrature amplitude to determine the Wigner function and
hence the density matrix. From the knowledge of the density matrix, information about
photon number and phase distributions is obtained. It has also been realized
experimentally. Other schemes include methods based on dispersive atom-field coupling
in a Ramsey method of separated oscillatory fields, atomic beam deflection, the
conditional measurements on the atoms in a micromaser set-up, the Autler-Townes
spectroscopy, resonance fluorescence, homodyning, unbalanced homodyning, photon
chopping, and photon counting. ' :

In this paper, we propose a scheme to determine the photon statistics of the
radiation field inside a cavity using a set up that is employed in the observation of EIT. In
EIT, a three-level atomic system is considered. When a classical field drives the upper
levels, the medium becomes transparent for a probe field resonant with the lower level
transition. The transparency results from the combined Stark splitting and quantum
interference of the dressed states, which are created by applying that additional
electromagnetic field. The splitting of the level is proportional to the associated Rabi
frequency. Heights of the peaks of the absorption spectrum are independent of the Rabi
frequency. Peaks are displaced from resonance by an amount equal to Rabi frequency. If
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the upper levels are being driven by a quantized field, the associated Rabi frequencies are
distribated according to the photon distribution of the driving field. The absorption
spectrum would thus mimic the photon distribution function of the driving field, which
can therefore be recovered from the spectrum. The condition under which the photon
distribution function of the driving field could be recovered is that the associated vacuum
Rabi frequency should be larger than the atomic decay rates. Method to determine the
photon statistics based on Autler-Townes spectroscopy is closely related to the one
discussed in this paper. Another closely related scheme which has been experimentally
realized for the determination of photon statistics is that of quantum Rabi oscillation.
Rabi oscillations have been observed in vacuum and in small coherent fields. Its Fourier
components show the discrete nature of field and the weighted Fourier components yield
the photon number distribution in the field.

Scheme

We consider a system of three-level atoms initially in the ground state interacting
with a quantized radiation field inside a cavity. The quantized cavity field drives the
upper levels of the atom. We are interested in finding the photon statistics of the field.
This is done by probing the absorption spectrum. The atoms are prepared initially in the
ground state. We show that the photon statistics of the radiation field inside the cavity can
be determined by looking at the absorption spectrum. Under exact resonance both the real
and imaginary parts of the-susceptibility vanish and the medium becomes transparent.
This result is valid for arbitrary photon statistics of the driving field. An important and
interesting fact is that the height of the peaks is independent of the excitation number n.

Including the contributions from all the photon excitations in the photon
distribution function and in the limit that the decay rate much less than the vacuum Rabi
frequency of the driving field, we get the complete absorption spectrum. This absorption
spectrum will mimic the photon distribution function. We next illustrate our results by
considering the example of a Schrodinger-cat state, which is a coherent superpesition of
two coherent states. The photon distribution is thus an oscillatory function of n. These
oscillations are manifestation of non-classical features of the quantum statistics. The
photon distribution function is plotted against n. The corresponding absorption spectrum
is plotted. The photon distribution function, recovered from the absorption spectrum in
the same way as mentioned above.

This scheme for the measurement of photon statistics through EIT is feasible
within the presently accessible experimental limits. A small Fabry-Perot cavity, as
reported by Hood where a single atom interacts with a cavity field, is appropriate for our
scheme. Here g=60 times 2pi MHz, which is determined by the cavity geometry, and the
atomic decay rate gamma=2.6 times 2pi MHz. These values are in accordance with the
condition required by our scheme that g>> gamma in order to resolve the peaks of the
photon distribution clearly. An improvement would be required as far as the cavity
interaction time is concerned, which is small in this case, in contrary to our requirement.
In the microwave region, however, a large cavity interaction time has been observed in
addition to the desired values of g and gamma. One discrepency, however, has not been
encountered here; the values of g and gamma referred here are for the same two levels,
which is not our case. '
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 Results

In this paper we have discussed a method based on “absorption spccirum to
measure the photon statistics of the radiation field using electromagnetically induced
transparency. This is a conceptually simple and direct method and involves no
cumbersome numerical inversions like that used in some other schemes for the same
purpose. Another advantage of this method is that it is insensitive to the detector
efficiency, which can create serious problems in the observation of nonclasswal features
of the quantum states.

Paper # 6

Atom Localization via Resonance Fluorescence

Introduction

In recent years, several schemes have been considered for the localization of an
atom using the standmg optical light field. These schemes are based on the possibilities
of measuring the phase shift of either the standing wave or the atomic dipole caused by
the passage of the atom through the field. We can also correlate a spatially varying
potential with an atomic resonance frequency and the position distribution of the atoms.
In these methods the position information is available only after the atom has passed
through the field. However for many potential applications, it is desirable to obtam
position information of the atom during its passage through the standing wave.

In this letter, we suggest a simple scheme to localize an atom inside the standing
wave during its motion. This scheme utilizes the idea that the frequency of the
spontaneously emitted photon carries the information about the position of the atom due
to position-dependent Rabi frequency of the driving field. Therefore an atom is localized
as soon as the spontaneously emitted photon is detected. This scheme presents a simple
method for the localization of an atom using simple two-level atom interacting with the
classical standing-wave field. In the presence of the driving field, dynamic Stark splitting
of the atomic levels takes place and we get a three-peak resonance fluorescence spectrum.
The splitting is directly proportional to the position dependent Rabi frequency. Our
scheme exploits this fact and by measuring the frequency of the spontaneously emitted
photon we can localize the atom during its motion through the standing wave field. It is
worthwhile to mention that such a scheme, along with a similar scheme for atom
localization based on Autler-Townes spectroscopy, affords a direct method to obtain
information about the quantum state of the radiation field without any major numerical
computations.

Scheme -

We consider a two-level atom with a center-of-mass wavefunction f(x). The atom
is moving along z-axis and interacts with a resonant standing-wave light field of wave-
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vector “kappa” aligned along the x direction. The velocity component of the atom along
z-axis is considered large enough so that the motion in this direction is treated classically.
The driven atom radiates spontaneously and one of the modes of the scattered light
interacts with the detector atom, initially in its ground state. We assume that the scattered -
light is absorbed by the detector atom and is excited to an appropriate energy level. Our
aim is to find the conditional position distribution of the atom. We assume that the center-
of-mass momentum of the atom A along x -axis does not change appreciably during its
passage through the standing-wave. We can then neglect the kinetic energy term for the
atom in the Raman-Nath approximation. Qur scheme utilizes the fact that the frequency
of the spontaneously emitted photon is directly related to the x dependent Rabi frequency
of the driving field. The spectrum of the spontaneously emiited photons or scattered light
mimics the position probability of the center-of-mass motion of an atom. The filter
function here is directly proportional to the excitation probability of the detector atom.
The problem therefore reduces to finding the excitation probability for a single photon
detection. The detector atom is interacting with the scattered light due to the decay of
atom A. The probability of exciting the detector atom is found by calculating the
expectation value of the projection operator. This excitation probability is therefore
proportional to the power spectrum of the scattered light emitted from the atom. In the
steady state the field emitted by the atom is statistically stationary.

Results and discussions

In the resonance fluorescence spectrum we have three peaks. In our scheme of
localization of an atom we replace the Rabi frequency with the position-dependent Rabi
frequency. The peaks are now position dependent. Atom now undergoes different Rabi
oscillation at different position in a standing wave and we get maxima in the position
distribution corresponding to these Rabi frequencies. We show a three-dimensional plot
of the conditional position distribution for an initially broad wave packet, as a function of
the normalized position and detuning. We note that for zero detuning there is a uniform
position probability distribution over the wavelength domain of the standing wave. This_
is due to the fact that the atom exhibits a peak at Delta=0 for any value of Rabi
frequency. The heights of the peaks for all values of position are the same and we
therefore obtain a uniform position distribution. Thus the conditional position distribution
provides no information about the atom localization for Delta=0. An increase in detuning
corresponds to the localization of the atom at different positions inside the standing wave
depending on the value of the position-dependent Rabi frequency. We obtain four
maxima of same heights and widths. For small values of Delta, these maxima are located
-near the nodes of the standing wave. However with the increased detuning, these peaks
move towards the antinodes of the standing wave. There are no resonances for Delta >2G
and we obtain a flat position distribution over the wavelength domain. These results
indicate a strong correlation between the detuning of the scattered light and the position
. of the atom. The measurement of a particular frequency corresponds to the localization of
the atom in a subwavelength domain of the standing wave. e

A clearer picture of the dependence of localization scheme of atom on the
position dependent Rabi frequency and detuning is demonstrated, where we show 2-
dimensional plots of the conditional position distribution as a function of normalized
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position for four different values of detuning. It is clear from these plots that the best
resolved peak is obtained at Delta=G for which the signal to background ratio is
maximum. We get a partial overlap of the adjacent peaks for the ranges O< Delta <G and
G<Delta<2G. This causes an enhancement of the background. The strength of these
overlap and consequently the signal to background ratio, depends on how much the
detuning deviates from the maximum value of G. However a complete overlap is
observed for Delta=0 and 2G, which corresponds to the node and antinode, respectively.

We also investigate the dependence of the width of the best resolved peaks, for
which the signal to background ratio is maximum. It is noted that the width decreases
with the increase in the amplitude G of the position dependent Rabi frequency. Here we
like to mention it again that the above power spectrum gives the conditional position
distribution. The frequency of the spontaneously emitted photon is related to the detuning
parameter. Hence the detection of the spontaneously emitted photon gives the immediate
information ‘about the position of the atom inside the optical field. Although the
spontaneous emission process is isotropic in nature and would require using 4pi detectors
in principle but for practical purposes, it is not necessary to measure every atom. It would
be sufficient to detect only those atoms whose spontaneously emitted photon is certainly
- detected.

Paper # 7

Quantum state measurement of an entangled state via Ramsey
interferometry

Introduction

A pure state of a pair of quantum system is called entangled if they do not
factorize, that is, if each separate system does not have a pure state of its own. In other
words we can say that the two systems are correlated in an entangled state. A mixed state
is entangled if it cannot be represented as a mixture of factorizable pure states. During
last many years a great deal of work has been devoted in order to highlight the
significance of entanglement, particularly for mixed state of a bipartite system. Entangled

. state of two or more particles, which are specially,+separated give rise to quantum
phenomena that cannot be explained in classical terms that is why the quantum
entanglement lies at the heart of the profound difference between quantum mechanics and
classical physics. The previous work devoted to the measurement of a quantum system
was concentrated on the single mode field in high-Q cavities. The quantum state of both
the single-mode and multi-mode radiation field is completely described by the state
vector. for a pure state and by the density operator for a mixed state. Equivalent
descriptions of the quantum state can be formulated in terms of the quasiprobability
distributions such as P-representation, Q-representation, or Wigner distribution function.
The reconstruction of full information of the quantum state of a given field is one of the
most fundamental problems of the quantum state measurement. Generally the quantum
state in a single experiment cannot be.measured precisely. However, one needs to
perform different experiments on identically prepared objects to infer the quantum state
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from the recorded statistical distributions. This idea was experimentally verified in a
quantum optical system proposed by Vogel and Risken. In their scheme, homodyne
detection method was employed to measure the quadrature distributions of equally
prepared light pulses. The Wigner function was then reconstructed using the said
quadrature distributions. The {icld distribution function can also be measured by using
the other methods such as separated oscillatory field, atomic beam deflection,: the
conditional measurement on atoms in a micromaser setup, and so on.

We are interested in the reconstruction of the Wigner function of entangled state
present in two separate cavities. Here we show entangled state of photons in spatially
separaicd cavities can be measurced using the icchniques of cavity quantum
electrodynamics. For this purpose we used the idea that quantum state of radiation field
can also be measured by measuring depressive phase shift produced by the off resonant
cavities on the interacting atoms. In Ramsey type setup the phase shift produced in the
two level interacting atoms is directly proportional with the number of photons present in
the cavity. We displace the photon statistics of the entangled field by injecting the same
frequency coherent state. The displaced photon statistics is then used to reconstruct the
Wigner function of cavities in a straightforward manner.

Wigner Function of two mode entangled field state

Here we show that how we have reconstructed the Wigner function of the two
entangled cavities. We start with the definition of the Wigner function described in. In
this reference Cahill and Glauber had suggested that the Wigner function of the single
mode field could be found by displacing the photon statistics of the cavity field. The
measurement of the displaced photon statistics of the cavity field then leads for the
reconstruction of Wigner function. The displacement in the cavity field is obtained by
injecting a coherent state alpha inside it. Cahill and Glauber had obtained a expression for
the Wigner function in terms of displaced photon statistics of the cavity field. The
Wigner function of the cavity field can be found directly if the displaced photon statistics
is known. We extend the idea of Cahill and Glauber to multimode entangle systems. We
realize that the definition of the Wigner function, which belongs to a general class of
phase-space distribution, can be written for the case of two-mode field also. Here we
assume that there is a joint probability of m photons in cavity mode A and n photons in
cavity mode B. As we need to measure the two separate entangled cavities that is why we
use two coherent sources for the displacement of the states inside the cavities. The two
separate sources are connected to the cavities such that coherent states are injected to
cavity A and cavity B, respectively. Thus the state of the field inside the cavities is
displaced. Thus the Wigner function of the field can be found directly if the displaced
photon statistics is known for all values of alpha and beta.

Reconstruction of photon statistics of entangled state
Let-us consider an entangled field inside two high-Q cavities. The presented
scheme for the reconstruction of photon statistics of the entangled field state can be used

for the reconstruction of full information in the form of Wigner function. We propose
Ramsey type setup for the measurement of photon statistics of the entangled state. A two
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level atom interacts first with Ramsey zone, the cavity A, the cavity B and in the last with
the second Ramsey zone. The atoms are resonant with the Ramsey zones and are off-
resonant with the cavity fields. The first Ramsey zone prepare the atoms in the
superposition of their internal states while the two cavities A and B introduces a phase
shift in the atomic states proportional to the total number of photons in the two cavities
where as the second Ramsey zone again prepares the atoms in superposition of atomic
states. At the output we measure the internal state of the atoms.

For the reconstruction of Wigner function of entangled state we propose to
displace each cavity modse by two independent microwave soutces resonant to cavily
mode A and B, respectively. The microwave sources inject the coherent states in cavity A
and B, respectively. This injection of the coherent states inside the cavities displaces the
state of the two separate entangled cavities.

We take the two-level atoms that are initially prepared in the excited state by laser
excitation before the interaction with the first Ramsey zone. The atoms in excited state
are then passed through the first Ramsey zone. The interaction time of the atoms with the
first Ramsey zone is adjusted such that they see a pi/2 pulse, this causes the preparation
of the atoms in the superposition of their internal states. Here we choose the relative
phase of the atom and field equal to pi/2. After interacting with the first Ramsey zone the
atoms pass through the first cavity A that is off resonant with the atomic transition
frequency. The atoms go under a phase shift during their passage through the cavity due
to dispersive atom field coupling. Brune discusses this dispersive type of atom field
coupling in detail. The phase shift produced in the atomic states after interacting with the
field present in the off-resonant cavity A depends on the number of photons inside it.
During this interaction the atoms go under a phase change only and there is no gain or
loss of photons between the atom and the cavity. The emerging atoms then interact with
the second cavity B and pick another phase proportional to the number of photons in this
cavity. The atoms, in the last, interact with the second Ramsey zone. Here the atom again
sees a pi/2 pulse and the relative phase of the atpmic probe and the Remsey field is 3pi/2.

The complete atom-field state is entangled and is complicated at this stage, it is
however clear that a measurement of the atoms in state a or b reduces the entanglement of
atoms with the field inside the cavities. At the output we measure the atoms in the exited
or ground state with the help of field ionization detectors. The probability of the atoms to
be detected in excited state can be found by taking the trace. Experimentally we get the
probability in excited state by the detection of the atoms in state a over the ensemble of
the detections on the identically prepared systems. Now at this stage we realize that the
difference of the probabilities of the excited and ground state can be used to find the
Wigner function of the entangled cavities. This gives us the method for finding the
Wigner function of the entangled cavities.

[t is clear that the Wigner function of the entangled cavities can directly be found
with the knowledge of the difference of the probabilities of the excited and ground states
of the atoms. The final states are the periodic functions, which exhibit a characteristic
pattern of fringes. The frequency of the patterns depends on the interaction time of the
atoms with fields. We take the initial distribution of the photons in the two cavities. The
first.atom passing through the cavity alters the photon statistics of the cavity field due to
the back action of the measurement. The photon uumber distribution is multiplied by a
oscillatory function on n.
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Conclusion

In cenclusion we have propesed 2 measurement techniaue for ohtaining the full
information of entangled state in two Separate cavities. The scheme is based upon the
Ramsey type setup in the separated oscillatory fields method. The Wigner function is
obtained by the displaced photon statistics 'of the cavity fields. The two separate
electromagnetic oscillators obtain this displacement of the field modes in two separate
cavities.

Paper # 8

Quantum state measurement using phase-sensitive
amplification in a driven three-level atomic system

Introduction

Quantum state measurement problem has attracted a lot of interest in recent years
in the field of quantum optics. A number of schemes have been proposed to measure the
non-classical states of the radiation field. These models incorporate the techniques based
upon absorption and emission spectroscopy, dispersive atom-field coupling, the
conditional measurement of the atom in a micromaser and others. As all the knowable
information of the density matrix of a quantum system are contained in its Wigner
function, so the knowledge of the Wigner function reveals the complete quantum state of
the system. This scheme has been applied successfully to experimentally measure the
vacuum and the squeezed states of the radiation field.

However, the finite efficiency of the photo detectors poses a series difficulty in
the measurement of the quantum state. The quantum states are highly sensitive to the
noise associated with the detectors inefficiencies. Inspite of some initial success, it is still
beyond the scope of the current experiments to resolve the fine details of a quantum state
being characteristic of non-classical behavior. For exampie, the oscillations in the photon
number statistics for squeezed states have not been observed yet. In some recent studies it
is shown that the measured probability distribution function becomes smoothed due to the
finite detection efficiency. For example, instead of Wigner distribution function,
smoothed quasiprobability distribution functions are reconstructed. In particular, for an
overall 50 detector efficiency, Q function instead of Wigner function is reconstructed. An
important question in this regard is how to overcome the finite efficiency of the detectors.
In this paper, we present a model for the quantum state measurement using a two-photon
amplification by three-level atoms in the cascade configuration, where coherence is
induced between the top and the bottom levels by driving the atoms continuously with a
strong external field. It was shown by Ansari, Banachloche and Zubairy that this system
exhibits remarkable differences with the system where the atomic coherence is obtained
before the interaction, so that there is no external driving field present during the
amplification process. These two methods for generating the coherence are not
equivalent. In fact it was found that the system with the driving field never reduces to the
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one studied in Ref. Instead it exhibits, as a function of the driving field, a range of
behavior, from a phase-insensitive amplifier for low driving field to an ideal parametric
amplifier at the other extreme. Here in this study, it is shown that this system could be
used for the reconstruction of the quantum state. In case of zero-detuning, for the large
Rabi frequency, when noise in both the quadratures reduces to zero, the amplifier
becomes identical to an ideal parametric amplifier and it successfully recovers the
original quantum state.

The Wigner function of the quantum state can be obtained by calculating the
complete distribution function for the quadrature values. The maximum amplification
with reduced noise for different quadrature phases is obtained by driving the system for
different values of the phase of the classical field. We have calculated the distribution
function for an arbitrary quantum state after its amplification through a phase sensitive
linear amplifies 1n a driven three-level atomic system. The distribution function of the
noise free quadrature is then used to reconstruct the quantum state of the field using
inverse Radon transformation well known in quantum tomography. We apply this model
to a Schrodinger-cat state and discuss its reconstruction after its amplification through a
two-photon phase sensitive linear amplifier in the zero-detuning limit. This model
enables us to overcome the problems arising due to the finite efficiency of the detectors
in homodyne measurement scheme. In an earlier paper, we proposed a model for the
quantum state measurement using two-photon CEL.

Model for the Field-Density Matrix

Our amplifier consists of three-level atoms in cascade configuration. The
transitions a-b and b-c are dipole allowed whereas, the transition a-c is dipole forbidden.
We assume that the transition a-c may be induced by employing a sufficiently strong
resonant external driving field. We are considering the linear amplifier, therefore, we
treat a-b and b-c transitions quantum mechanically up to the second order in the coupling
constant and a-c transition semi-classically to all the orders. We assume that the atoms
are initially pumped incoherently to the upper level. For simplicity, the decay rate is
considered to be same for all the three levels. The coherence is produced by the classical
driving field and is responsible for the phase-sensitivity in the system. In the remaining
calculation, we assume that the two-photon resonance condition is applicable. Here we
consider a two-photon linear amplifier, and calculate the gain contribution for the field
quadratures. It is interesting to note that G depends upon the phase of the classical driving
field and the phase of the generalized quadrature. In the forthcoming subsection, we
discuss the reconstruction of the Wigner function in the zero-detuning limit. :

Reconstruction of the Wigner distribution function in the zere detuning limit
; ! i

The zero detuning condition requires that the level b lies exactly in between the
~ upper Jevel a and the ground state level c. The time evolution of the Wigner function of
the ficld can be evaluated by writing in terms of its Fokker-Planck equation for the
Wigner distribution and by finding its time dependant solution. We find the evolution of
the Wigner function for any arbitrary initial field. We are interested in the measurement
of the quadrature distribution when the initial quantum state is amplified through a phase-
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sensitive three level atomic system. In a balanced homodyne detection measurement
scheme, the quadrature phase is characterized by the phase of the local oscillator. A
complete distribution for the quadrature component is determined by scanning the field
quadrature over a range of phase. Such distributions have recently been measured in
quantum optical tomography.

The parametric limit of the amplifier requxres that psi=0. This condition requires
that for the measurement of the field quadrature with maximum gain in each phase, the
amplifier atoms have to be prepared in a specific phase correspondingly. The control over
the amplifier phase is quite subtle in our model and it is exercised by introducing the
variation in the phase of the driving tield, from out side the cavity. This makes this model
more realistic in its application for the quantum state measurement problem. In the
limiting case the Rabi frequency of the classical driving field is much larger than the
atomic level widih gamma, the expression for the gain parameter G reduces. In this
condition the noise in both the conjugate quadrature reduces to zero and the amplifier
becomes identical to a degenerate parametric amplifier. Once the quadrature distribution
of the amplified quantum state is measured in balanced homodyne measurement, then the
corresponding Wigner function can be reconstructed by carrying out the inverse Radon
transformation familiar in optical tomographic imaging.

Reconstruction of the Wigner Function in Non-Zero Detuning Limit

A more general case for two photon resonance condition is that of non-zero
detuning. In this case, in order to separate out the noise and the gain terms, we impose
the additional conditions. In the non-zero detuning the generalised quadrature distribution
again emerges out the same as except for the change in the gain parameter G and the
parameter xi. In this case G would always be greater than one for all the values of Omega
and gamma. However, excess noise would be induced in both the conjugate quadratures
and the quantum information carried away by the field quadrature would start fading
away. Therefore, the original state would be recovered only upto a particular order of

Delta / gamma. It is clear that for Omega / Gamma -> infty, and alpha t = infty, we -

recover the Wigner function for the original Schrodinger cat state. In the forth coming
section, we present the results of our numerical simulations. ;

Results and discussion

We present the results of our numerical simulation. The plots of Wigner function
for xi_0=2, alpha t=1 and Omega / Gamma =1,15 and 30, respectively for zero detuning
case. The results shows that for Omega / Gamma =1 (phase-insensitive amplifier) the
well known oscilltory behaviour of the Wigner function vanishes. However, with the
increase in Omega / Gamma the oscillations start appearing. For Omega / Gamma =30,
the original Wigner function is almost fully recovered. We present the plots of Wigner
function for xi _0=2, alpha t=5 and Omega / Gamma =1,15,30 and 60. The complete
Wigner function is obtained for Omega / Gamma =60, which is quite interesting. We also
present the plots of Wigner function for xi_0=2, alpha t=10 and Omega / Gamma =1,30,
60 and 90. This shows that an increase in alpha t requires larger value of Omega /
Gamma for complete reconstruction of the original quantum state. We show the plots of
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Wigner function for alpha t=1 and Delta / Gamma =1,2,4 and 8. It is interesting to note
that with the increase in detuning, the original quantum state is fully recovered. This
scheme allows to overcome the problem of detector efficiency.

In conclusion, it is shown that in a three level atomic system where the atomic
coherence is established by driving the atoms continuously through a strong external
classical field allow us to fully recover the Wigner function of the initial quantum state.

Paper # 9

Wigner function reconstruction using time-dependent physical
spectrum

Introduction

Quantum objects cannot be seen as they are. This is due to the fact that quantum
mechanics does not permit us to observe a single physical object completely. If one of the
conjugate variables, for example, position of the physical object is predicted precisely the
other conjugate variable. However, statistically, the physical properties of identically
prepared objects are reproducible and we can obtain a state or wavefunction, which
describes an ensemble of these physical objects. The measurement of such a quantum
state is of great importance due to the fact that it brings into light various fundamental
laws of nature, which can be described only by quantum mechanics principles. The state
or wavefunction of a physical system contains the complete information about the system
and any future prediction can be inferred from the state or the wavefunction. The
dynamics of a single mode light field is very much analogous to the dynamics of a
quantum particle and that is why it gets considerable attraction amongst the researchers to
measure the quantum state of the light. The other main reason of attraction in this area is
due to the fact that several states of the radiation field exhibit non-classical features.
These include the squeezed state and Schrodinger-cat state. The main question, however,
is how the state of the quantum field can be measured? :

In the last decade, an extensive effort is being made to measure the quantum state
of the radiation field by using various indirect methods. These include techniques based
on Ramsey method of separated oscillatory fields, atomic beam deflection, the quantum
state tomography, quantum state endoscopy, and several others. Quantum state
representations are P-, Q-representation, or the Wigner distribution function. These
quasiprobability distributions have phase space, representation and therefore, can be used
for the evaluation of symmetrically ordered correlation functions of the creation and
annihilation operators of the field. Most importantly the non-classical features of
squeezed state and Schrodinger-cat state can be manifested in the quasiprobability
distributions such as P-representation and the Wigner distribution function. Among these
various quasiprobability distributions the Wigner function is of particular interest. It has a
one to one correspondence with the state or wavefunction and it can take on negative
values. This quasiprobability distribution is therefore, closely related to the state or
wavefunction and it represents the state of a quantum system in phase space. It is possible .
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to reconstruct the Wigner function from other probability distributions that can be
measured experimentally for an ensemble of identically prepared quantum systems.

- In this article we present a scheme for reconstruction of the Wigner function using .

the two-time correlation function of atomic dipole operators. The system uses the Autler-
Townes spectrumn for a quantized radiation field in which the peaks are located at each
number of photon. The associated Rabi frequencies are distributed according to the

photon distribution function of the field and the photon distribution is recovered from the °

spontaneous emission spectrum in-.a straightforward manner. Here we consider the
definition of the physical spectrum, which is proportional to the two-time correlation
fuuction, to calculate the spontaneous emission spectrum.

Model

In the present scheme we consider a system of three-level atoms with energy
levels a, b and ¢ passing through a quantized radiation field pre@ent inside the cavity. A
source that injects a coherent state is connected to the cavity. The injected coherent state
displaces the state of the cavity. The photon statistics of displaced state of the quantum
field is therefore, represented by and the corresponding Wigner function. If we have the
photon statistics for all values of alpha we can easily reconstruct the Wigner function. It
is mentioned earlier that the photon statistics of the driving field can be found directly
from the spontaneous emission spectrum. Therefore, our requirement now is to calculate
the spontaneous emission spectrum of our three-level system. We consider that the
atomic fransition between level a and c is resonant with the cavity field and atom decay
from the level a to b at the rate gamma. We also assume that the decay rates from the
levels c and b are very small as compared to gamma and we may ignore these decays.
The atom undergoes Rabi oscillation due to the interaction with the resonant cavity field

and with a certain probability decays spontaneously to the energy level b. The time- .

dependent physical spectrum of the scattered light at some suitably chosen point in the far
field is obtained by taking the Fourier transform of the normally ordered correlation
function of the field.

Results and Discussion

We calculate the expression for the time-dependent spontaneous emission
spectrum. The complete spontaneous emission spectrum consists of contribution from all
the photon excitations in the photon distribution function. To reconstruct the Wigner
function we inject a coherent state inside the cavity as discussed above. The spontaneous
emission spectrum now depends on the complex amplitude. The peaks in this spectrum
are located at the integral values, so, the only meaningful values are the integer values.
We can now reconstruct the Wigner function in a straightforward way. It may be noted
that the spontaneous emission spectrum for a given value of the injected field gives the
Wigner function at a point alpha in the complex plane and we have to obtain spontaneous
emission spectra for different values to reconstruct the complete Wigner function.

We plot the Wigner function of the Schrodinger-cat state. The oscillations at the
center of the Wigner function in between the two Gaussian hills exhibits the interference
, structure due to the quantum superposition of both amplitudes. It is also clearly observed
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that in certain regions of Wigner function becomes negative showing the non-classicality
of the Schrodinger-cat state. We show the contour plot of the Schrodinger-cat state,
which gives a beautiful picture of the contour lines in the Wigner function. We show the
plots of the reconstructed Wigner function from the (ime-dependent spontaneous
emission spectrum. The Figure shows a perfect recovery of the original Wigner function.
The contour plot of the Wigner function shows the contour lines of the distribution, this is
in perfect agreement with the original plot.

In summary, in this article we have suggested a scheme to reconstruct the
quantum state of the radiation field inside the cavity. This scheme uses a time-dependent
physical spectrum, which is more realistic approach as far as the spontaneous emission
spectrum measurement is concerned. In present scheme we do not require the atoms to be
in coherent superposition of states, which is very ‘difficult to attain, as it is a highly
unstable state. A major advantage of this scheme is that it is directly applicable for the
measurement of a quantum state and again no cumbersome mathematical manipulations
are required for this purpose. Another advantage of the proposed scheme is that it is
strongly independent of the detector efficiency. As we have used the spectrum for the
calculation of the quantum state, a few no-photon counts can easily be ignored. The
‘condition that has to be satisfied in this scheme is that the ratio of gamma / Omega, has to
be very small in order to keep the peaks, resolved clearly. We have kept gamma / Omega
=0.01. This small ratio of gamma and Omega has been achieved experimentally in the
microwave and optical regions, respectively. The definition used for the spontaneous
emission spectrum is more phenomenogical rather than the physical. The realistic
approach for calculating the spontaneous emission spectrum is to use the two-time
correlation function of the atomic dipole operators.

Paper # 10

Measurement of entangled state via atomic beam deflection in
Bragg's regime

Introduction

In twentieth century the quantum theory of physics has been a fascinating
playground to study the nature of electromagnetic radiations and matter. In this subject,
the forces on atom by light have received much theoretical and experimental attention
during past many years, not only because of interest in the basic atom field interaction, -
but also for the measurement of an unknown state of electromagnetic field which poses
an interesting question in it. The measurement of the cavity field had gained a very high
attention because of the possibility of the quantum computers, quantum teleportation,
quantum cryptography, dense coding and many more. Generally the quantum state in a
single experiment cannot be measured precisely. However, one needs to perform
different experiments on identically prepared objects to infer the quantum state from the
recorded statistical distributions. This idea was experimentally verified in a quantum
optical system proposed by Vogel and Risken. In their scheme, homodyne detection
method was employed to measure the quadrature distributions of equally prepared light
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pulses. The Wigner function was then reconstructed using the said quadrature
distributions. The other methods for the measurement of cavity field are based on
dispersive atom-field coupling in a Ramsey method of separated oscillatory fields, atomic
beam deflection, and absorption and emission spectrum. An excellent review of quantum
state reconstruction is given in. Most of this work was devoted to the measurement of a
single mode field in high-Q cavities. A :

The measuring process, in general, depletes the field if usual photon-counting
technique is employed. For an ideal measurement thus we require that the system probe
does not feed back noise into the variable that are being measured. This type of
measurements is referred as quantum non-demolition measurements. The schemes of
quantum non-demolition measurement may be based on, dispersive atom-field coupling
in Ramsey type setup, optical Kerr effect, or atomic scattering. Among these schemes the
atomic scattering method provides a nice tool for the measurement of field photon
statistics, as the momentum distribution of deflected atoms is a function of field photon
number The atomic diffraction from the electromagnetic field may be divided into two
regimes, one in which the recoil energy of the field is much grater then the Rabi
frequency (the Bragg regime) and the other in which the recoil energy is much less then
the Rabi frequency (Raman-Nath regime). The-theory of Bragg diffraction was given by
Bernhardt and Shore and was reported in several experiments in which up to 8th order of
diffraction has been observed. All these experiments were done with the classical field in
cavities, however the advancements in technology, have made it possible to realize the
diffraction of atoms from quantized cavity field. This paper deals with the utilization of
atomic scattering in Bragg regime for quantum non-demolition measurement of joint
photon statistics of entangled state in two separate cavities.

There are few schemes reported for the reconstruction of multi-mode field inside
a cavity. A scheme for the reconstruction of entangled state in a cavity has been put
forwarded by Kim and Agarwal. They used the idea that probability of atomic inversion
after a two-level atom interacts with a cavity field is directly related to the Wigner
characteristic function. Ikram and Zubairy proposed another scheme based on Autler-
Townes spectroscopy to reconstruct the two-mode entangled state in a high-Q cavity. The
scheme by Davidovich uses Ramsey type setup to reconstruct the GHZ state in three
particles. Having a well justified and mathematically tractable measure of entanglement
is likely to be value in a number of areas of research including the study of decoherence
in quantum computers and the evaluation of quantum cryptographic schemes.
. Here we are interested in the reconstruction of the Wigner function of entangled
State present in two separate cavities. We show that the entangled field states in spatially
separated cavities can be measured using the techniques of Bragg's diffraction of two-
level atoms from the entangled field. We study the deflection of atoms from far detuned
high-Q cavities in first order Bragg regime and develop quantum non-demolition
measurement scheme based on it. The method adopted here is the reduction of entangled
state to a Fock state, and then reproduce the field state by repeated measurements. Our
suggested scheme successfully reprcduces the photon statistics of the entangled
electromagnetic field in.two separate cavities. The photon statistics of the entangled field
state does not give the full information of the field state; rather it gives the information
only about the diagonal matrix elements. To get the information about the off- dlagonal P
matrix elements we propose to reconstruct the Wigner funmon of the entangled field *
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state to be measured. For this purpose we propose to displace the field state in two
cavities by injecting coherent states to the cavities. The displaced photon statistics is then
used to reconstruct the Wigner function of cavities in a straightforward manner.

Energy-momentum conservation argument

In optical Bragg scattering, the condition for constructive interference of atomic de
Broglic waves requires that the angle of incidence to the standing wave plane must be the
one of the nth order scattering angles that satisfics Bragg relation. Similarly, thc Bragg
diffraction of a well-collimated atomic beam by the planes of standing wave
electromagnetic field can be viewed as the deflection of the atomic de Broglie waves
from standing wave of the field. It is important to note that no deflection occurs if the
angle of incidence does not correspond to one of the scattering orders. This results in
momentum transfer only for discrete initial values of atomic momentum (i.e., the only
process which can conserve both the energy and momentum is the scattering in which the
incidence angle satisfies the Bragg's condition). The situation of atomic scattering is
similar to the Bragg diffraction in X-ray scattering from.crystals, and dictates that by
changing the longitudinal component of momentum we can change the order of Bragg
scattering. It is also clear that the atom-field interaction in the cavity reverses the
direction of motion (in longitudinal direction) of the atoms only. The magnitude of the
momentum remains same before and after the interaction, thus the energy momentum is
conserved in Bragg regime.

Scheme for quantum nondemolition measurement of entaxigled field -

We consider an a two mode entangled field state present in two separate cavities.
The state vector of the entangled field contains the joint probability of having m_{A}
photons in cavity A and m_{B} photons in cavity B. We present a simple scheme for the
measurement of this type of entangled field states. A two-level atom interacts off-
resonantly with the standing wave fields in the cavities in cascade fashion. We take the
atom having detunning between the atomic transition frequency and the frequency of the
cavity mode. The atom first interacts with the field present in the cavity A, then it
interacts on his way with the second cavity B. The probe in this scheme is the momentum
states of the atoms in Bragg regime. In this régime, it is assumed, that the momentum
component of the atoms along transverse direction is very large, so one can treat it
classically. At the same time, the atoms have well-defined momentum states in the
direction of wave propagation i.e., the longitudinal component of the atomic momentum
is well defined, and we can treat it quantum mechanically. The atoms are prepared in the
ground state g, (which ensure us the quantum non-demolition measurement) with initial
momentum state in the direction of wave propagation. After interacting with two cavities
the atoms are detected in either of the two momentum states with the velocity selective
detectors placed after the cavity B. We suggest to keep the injection rate of the atoms
very low so that there 1s only one atom interacting with the cavity mode at a time. In
Hamiltonian we neglect the constant momentum components along the transverse
direction as discussed earlier. We first specialize to the atom-field interaction in cavity A.



The conditions under which the proposed scheme acts as a quantum
nondemolition measurement can be obtained by taking the case when the detuning of the
atom-field is very large as compared to the recoil energy. Under this condition we can
ignore the recoil energy term in comparison with the detunning term. Here it is clear that
the above limit also prevents the atom in going to excited state, thus the decoherence
effect by spontaneous emission is not present. In Bragg's regime the atom may either go
undeflected or it may get deflected. The angle of the deflection depends upon the number
of interactions with the cavity field. For depressive atom-field interaction, the number of
interactions of the atom with the field remzains even, i.e., the atom goes through complete
cycles of consecutive excitations and de-excitations. This is because of the large
detunning limit, therefore during interaction with the field, the atom undergoes through a
complete Rabi oscillation. Due to this the atom emerges from the cavity in the same
initial ground state conserving energy, and with a total momentum change of 1hk in the
direction of wave propagation, (i.c., for each complete cycle the momentum transferred to
the atom is zero or 2hk). This condition under which the energy of the cavity do not
change is at the heart of the quantum nondemolition measurement process.

The difference between Bragg scattering and Naman-Nath scattering is that there
is only one possible diffraction order in the former case, and in the lateral case diffraction
in many orders is possible simultaneousiy. The reason for many possible diffraction
orders is that in Raman-Nath scattering, the atomic deBrogli wave is very sharply focused
which is contrary to Bragg scattering. Consequently, in Raman-Nath scattering the atom
could scatter into many different orders still conscrving energy and momentum and the
diffraction pattern remains symmetric about initial atomic trajectory. The absorption and
stimulated emission of photon pairs causes the change in the direction of momentum
along the wave propagation in such a way that the magnitude and its Kinetic energy
remain unchanged. Hence the momentum vector lies on a circle of constant energy in
momentum space. Now it is clear that the probabilities of atomic momenta in first order
Bragg diffraction oscillates only between the two probabilities and outside this range
acquire very less contribution. We apply adiabatic approximation, which dictates that the
slow varying amplitudes dominate the time evolution. Thus, we obtain a closed set of
equations for probability amplitudes, which can be decupled by differentiating and
putting the values from the respective equations. The final probability amplitudes of the
atom-field interaction now act as initial conditions for the interaction of atom with the
cavity B. Again the evolution of the system is similar as it was in the first cavity with
only one change of the initial momentum states as the two momentum components are
possible for the atoms after interaction with the cavity A. These two probability
amplitudes clearly display oscillations of the momentum states where as all other
probability amplitudes remain insignificant as demanded by the adiabatic approximation.
Thus knowing the probabilities of the momentum states by the repcatedly measurement
of the momentum of the diffracted atoms we can determine the state of the cavity field.

As the probability of detecting the atoms in momentum state p_{0} or p_{-2} is

the product of joint photon statistics and an oscillatory functicz, so the photon number
distribution can be transformed after detecting the atom in any of the momentum state.

The sinusoidally varying function shows that the argument of this function contains the

information of the entangled field modes. The spacing of the fringes depends upon the
number of photons present in the entangled cavities. The photon number for which the
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fringe function is closest to zero, are efficiently decimated thus causing the reduction in
the field photon statistics. The oscillatory nature of the probabilities for the momentum
states p_{0} and p_{-2} is due to the quantum interference process.

If the process is repeated on the same field with an atomic beam having different
velocities and the atoms are detected in any of the momentum state then photon number
distribution is suppressed and finally we arrive at fixed photon numbers in two cavities.
Let these numbers be r and s in cavity A and B, respectively. Wp repeat thc same process
until we get another set of photon number say r*{prime} and s"{prime} in two cavitics
We continue the process untii the field state in two cavities is finally projected on an
intensity patiiern, even though no energy has exchanged between the atoms and the field.
This is at the heart of quantum non-demolition measurement.

This situation is completely analogous to the quantum non-demolition schemes
discussed, where the field initially in a coherent state transforms to Fock state with the
measuring sequence. In our case the information acquired by detecting a sequence of
atoms also modifies the entangled field function step by step, until it eventually collapses
into a Fock state. We show how the photon number distribution transformed to Fock state
after detection of a sequence of atoms with momentum state p_{0} or p_{-2}. Such
repeated measurements lead to the determination of the photon statistics of the cavity
field. Note that in this scheme the spread in the vertical velocity of the atom does not
require any control. On contrary, the dispersion in the atomic vertical velocity, which
corresponds to the uncertainty in phase helps as it makes easy to determine the entangled
state of the field.

Wigner Function of two mode entangled field state

The Wigner function of the field can be found directly if the displaced photon
statistics is known for all values of alpha and beta. We have already seen that the photon
statistics of the entangled field can be found by reducing the initial photon statistics to a
Fock state and then repeating the experiment to a ensemble of the identical entangled
cavities. In our scheme to get the Wigner function of the entangled state we propose to
displace each mode by injecting coherent states alpha and beta into the cavity A and B,
respectively. Experimentally coupling two resonant classical oscillators to the cavity
modes A and B, respectively, carries out this operation. The displaced photon statistics of
the entangled field allows us to calculate the Wigner function of them. In addition the
momentum states for each value of alpha and beta gives the two-mode Wigner function
in a straightforward way, which shows that the two-mode Wigner function of entangled
field state can be found by the displaced state of the entangled cavities for all values of
alpha and beta.

Resuit and Discussion :
We want to do quantum non-demolition measurement of the entangled field in
two scparate cavities. For this purpose we have used atomic Dragg diffraction. Moreover,
we take the large detuning between the entangled field frequency and the atomic
transition frequency. This ensures that atom does not exit from the cavity in excited state
and there is no spontaneous emission that contributes a photon in arbitrary direction. This
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was noted that the atom comes out of the entangled cavities without altering the photon
number of the field with two moméntum states. Thus in this process quantum non-
demolition is well maintained. The information of the field photon number can now be
extracted from the momentum probability distribution of the deflected atoms. We have
seen from our calculations that the momentum probability of the scattered atoms is a
periodic function and the argument of the periodic function contains the field photon
statistics. In order to find the entangled field state we have used the method of reducing it
" {u a single Fock state and then to measure it. Interaction of each atom with the entangled
field present in two separate cavities updates the cavities field statistics depending upon
the interaction time. The photon statistics gets multiplied by oscillatory function, which
has periodic maximas and minimas. The position of the minimas changes with the
interaction time of atom with field. The interaction time of the atom can be controlied by
controlling the transverse velocity of them. Each atom in different interaction time
eliminates some photon numbers in the distribution, until after a few number of atoms
only one photon number state is left, which then does not change. By repeating this
simulation and counting the number of times each n is appearing, we reconstruct the
~original photon distribution.
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Precision position measurement of atoms has a vast his-

& lory of interest due to its involvement in many applications

like laser cooling, Bose-Einstein condensation, and atom li-

& thography. The experimental progress in using light forces to
; manipulate the motion of atoms [1] make it more desirable to

get high resolution position measurement of atoms with op-

@ lical techniques.

In recent years, several schemes have been considered for

. - the localization of an atom using the standing optical light
field. For example. Storey et al. [2] and Marte and Zoller [3]

- proposed the idea of a virtual ‘‘optical slit.". In that scheme,
the atom is localized by measuring the phase shift of the
“optical field in a cavity due to the spahally, varying atom-
field coupling. The localization in position space based on
the phase-shift measurement on the field is further investi-
gated via homodyne detection [4,5] by using-the method of
quantum trajectories [6]. A related technique:for the position
measurement of the atom is used by:Kunze et al. [7] in

f. . which the phase shift of the atomic dipole,=rather than'the
8- light field is used. Kien et al. further investigated this method

and showed that a coherent cavity field :substantially .en-
hances. the resolution as compared to a classical field [8]. In
- arecent experiment, Kunze et al. [13] demonstrated how the
entanglement between the atom’s position and its internal
state allows one to localize the atom without directly affect-
ing the particle’s spatial wave function. The\y reported the
-~ possibility of producing ndrrow‘locahzatlon structures with

%

¢ widths below \/20. . ¥

Other techniques such as atom imaging methods are pro-

4 posed by Thomas and co- -workers [9-11]. These methods are
# based on resonance imaging, i.e., a spatiaily,varying poten-
“#® tal shifts the resonance frequency of an atomic transition.
2 The rﬂfore the resonance frequency is posit tion dependent and

y spectroscopic methods.
Thﬂv achieved a spatial resolutlon of 1.7 pm for the atomic
position measurement by using the technique of atom mmg-
ing in high -magnetic field gradients. Thomas er al. further
demonstrated that a suboptical wavelength localization can
be achieved by using light-shift gradient for atom imaging
(12].

In this article we suggest a simple scheme to locahze an
atom inside the standing wave during its motion. This
scheme utilizes the idea that the frequency of the spontane-
ously emitted photon carries the information about the posi-

b l/_) tion di .A:(LZ (‘" 1§ Glu :'j(:f 1ed by
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M

61 063806-1

PHYSICAL REVIEW A, VOLUME 61, 063806
Atom localization via resonance fluorescence

Sajid Qamar,’ 2 Shi-Yao Zhu,? and M Suhail Zubairy'?
'Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan
2Department of Physiés, Hong Kong Baptist University, Kowloon Tong, Hong Kong
(Re:ewed 8 July 1999; published 11 May 2000)

We propose a sxmple scheme of atom localization based on resonance fluarescence from a Standing-wave
field. The Rabi frequency is posmon dependent and therefore the spontaneously emitted photon carries the
nter-of-mass motion. This leads to atom localization even during the flight through

tion of the atom due to its dependence on the positio

dependent Rabi frequency of the driving field. Therefore ¢

atom is localized as soon as the spontaneously emitted ph
ton is detected. This scheme presents a simple method for tt

localization of an atom using a simple two-level atom inte

acting with the classical standing-wave field. In the presenc
of the driving field, dynamic Stark splitting of the atomi
levels takes place and we get a three-peak resonance fluores
cence spectrum. The splitting is directly proportional to th
position-dependent Rabi frequency. Our scheme exploits thi
fact-and by measuring the frequency of the spontaneousl
emitted photon we can localize the atom during its motio
through the standing field. It is worthwhile to mention tha
such a scheme, along with a similar scheme for atom local
ization based on Autler-Townes spectroscopy [14], affords :
direct method to obtain information about the quantum stat
of the radiation field without any major numerical computa
tions [15,16].

We consider a two-level atom A with energy levels |a)
and |b) and transition frequency w,, that is described by ¢
center-of-mass wave function f(x). The atom is moving
along the 7z axis and interacts with a resonant standing-wave
light field of wave vector k= w,,/c aligned along the x di-
rection as shown in Fig. 1. The velocity component of the

-atom along the z axis is considered large enough so that the

motion in this direction is treated classically. The driven
atom radiates spontaneously and one of the modes of the
scattered light interacts with the detector atom B, initially ir
its ground state. The detector atom consists of the ground
level | B) and a set of excited levels | ). We assume that the
scattered light of wave vector K, is absorbed by the deteclor
atom and is excited to an appropriate energy level lako). Our
aim is to find the conditional position distribution of the
atom 4, i.e., the conditional probability W xiijay ) of Lind-
ing the atom A at position x at time ¢ when the de'ector atorr
B is éxcited to the level Jery )-

We assume that the center-of-mass momentum ol the
atom A along x axis does not change appreciably during its
passage through the standing wave, We can then neglect the
kinetic energy term for the atom in the Raman-Nath approxi-
mation. The interaction Hamiltonian for the atom A, in the
dipole and rotating-wave approximations, is therefore giver
by

©2000 The American Physical Societ)
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Atom ‘B

Scattered Light

-~

| “Detector-

s

Atom ‘A’ ‘

FIG. 1. Two-level atom A moving along the z axis and mteract-
ing with a resonant standing-wave light field of wave vector K
= w,, /c aligned along the x axis. The driven atom A radiates spon-
taneously in all directions. The detector atom B, consisting of*the
ground level | 8) and a set of excited levels |a,), absorbs the ermt-
ted photon in mode k. e

H(1)=hg(x)[la)bl+[b)(al]+42 [gu(x)]a)
X(ble ™% byt g ()|b)ale x bl

)

where g(x)=G sin(xx) is the position-dependent Rabi fre-
quency, the operators by and b} are the annihilation and

creation operators for the photons in the reservoir modes -

with frequency v, =c|k|, and g\(x) is the coupling constant
between the atom and the vacuum mode k. The state vcctor
for the complete atom-field system is

|‘I’(t))=f dxf(x)|x)n2 [Ca:(;ko;;,q’ﬂ(.r;t)|a,0k°,nq,3):.‘;52

se Cb.Oko.nq.B(x;t)|b7Ok0’n¢i ?B)f 5

at
)

@

s

+ Cb‘oko'"q “ko(x”)lb’o"‘o’n‘l ’ak())]’

where C;q -nqﬁ("';t) is the position-dependent probability
0
amplitude with the atom A being in the level |i) (i=a,b)

with no spontaneously emitted photon present in the mode k.

and n photons present in the mode q, while the detector atom
remains in the ground level |B). Similarly C”-“ko-"q“' (x;1)

is the probability amplitude for the atom A to be in the level

|b) after emitting one photon in the Koth mode and having n -

photons in the mode q; the emitted photon is absorbed by the
detector atom B exciting it to the state Iako) with no photon

left in the koth mode.

Re
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Our scheme utilizes the fact that the frequency of the
spontaneously emitted photon is directly related to the
x-dependent Rati frequency of the driving field. We now sce
how the spectrum of the spontaneously emitted photons of
scattered light mimic the position probability of the center-
of-mass motion of an atom. The conditional probability
W(x;t| ay,) of finding the atom A at position x at time 1 when

the detector atom excites to the level |y ) is

Wexitlaw) = 2 Kel¥hoyng.a ) (s
where
| Yo.0, mg ,ak0> = May [(ngl{0y |(6]¥(1))

=A’f dxf(x)Cb,okov,,q'ako(x;t)lx). )

Here N is a normalization factor. Thus the conditional pos-
tion probability is given by

ATOM

The re:

E

This ex
tional tc
ted from
emitted
correlati
the time

§ P

" As the fie

W(x;t|ako)EW(x)=]f(x)|2P(w,x,t), (5 i

with =|k,|/c and

the atomi

(E°

; “ where 7,(

P(0,x,1)=|N 12D [Chp, n o (i (6 3§ of atomic
: nq Bk & lated by u
: S ; s 4. laking they
Here P(w,x,t) is the filter function which is directly propee-  #8. power sp-
tional to the excitation probability of the detector atom. Th *
problem therefore reduces to finding the excitation probabd- §°
ity P(w,x,t) for a single photon detection. ‘ ; Pliis
The detector atom is interacting with the scattered hpl } >
due to the decay of atom A. The interaction picturc Ham!- 8~
tonian for the interaction between the detector atom locsind : B¢
at position vector r and the scattered field E7(r,r), in 8¢ 33 i{
rotating-wave approximation, is g
—; [pakﬁaakBE+(r¢t)e‘w’ e
+@zkﬁ0ﬂakE_(rvt)e~iw']' m “Whﬁrc A=
ol 2 3
For the detector atom initially in its ground state | ) and e 5@&=" . =—_[
field in some state |f), the state of the atom-field syuml 4

time ¢ is given by

[ ¥ (1))=Un)|B)If). U

We then have

|¥(1))= []_?{J dt’H,(t' )llﬁ)lf) '

The probability of exciting the detector atom to level u, ¢
found by calculating the expectation value of the projzen
operator |y Y|, ie.,

*The expressi

Rabi frequen
dom i.e., g
rum is

)

Plox,x)=
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P(w.x.r)=(‘P(:)[ako)(a|,o|‘1’(t)). (10)

The resulting expression for the excitation probability is

pz - i r {
P(OJ.I,T)=;'2'I dt]f d!z{E_(l',rl)E+(l'.f2))
1) to .

xe—:’m(:,—t:). (11)
This excitation probability P(w,x,T) is therefore propor-
tonal to the power spectrum of the scattered light [17] emit-
&d from the atom A. In the steady state (T3 ') the field
emitted by the atom is statistically stationary, i.e., the field
worrelation function (E~(r,t,)E™(r,t;)) depends only on
the time difference 7=r,—1t,. We then obtain

1 w ;
Plw,x,o)= ;Refo dT(E~(r;t)E* (r;t+7))e o7,
T (12

As the field operators E~(r,0), E*(r,t) are proportional to
the atomic operators o4 (f), o_(r), respectively, we obtain

(ET(BnEY(re+7))=Iy(r)(o(f)a_(1+ 7)), (13)

vhere Io(r) is a constant. The two-time correlation function
of atomic dipole operator (o, (t)o—(t+ 7)) can be calcu-
kted by using the quantum regression theorem. It follows on
uking the Fourier transform of (o .(t)o_(1+ 7)) that the
power spectrum of fluorescence light is [18]

([ 48 [ 4aT?
il e o (1‘2+ ng(x))[l"2+832(x) .
r 2

+ -+
A+(T/2)? (A-f_-;,u,)2+(3l"l4)2

£
- (A— )+ (3T/4)?

sere A=w,,—w, p=Agi(x)=T716, and

: ' (14)

3r'|8g%(x)-T?| --. T |40g%(x)-TI?
=l AT G it |
4 |8g%(x)+T 4p| 8g¥(x)+T

The expression for P(w) simplifies considerably when the
Rabi frequency is much larger than the decay rate of the
som i.e., g(x)=>TI. The resulting expression for the spec-
mm is

3r/4 : r
A+2g(x)]2+(3T4)* A2+(T/2)?

1
Plw,x,=)= cgn(;) [[

U
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W(x) 05
0.0
0 A

0

FIG. 2. Conditional position probability distribution W(x) as a
function of normalized position xx(0=«kx=2), and detuning A,
for g(x)®I". For A=0 there is a uniform position probability dis-
tribution over the wavelength domain of the standing wave. By an
increase in A, maxima corresponding to atom localization at differ-
ent positions inside the standing wave (initially near the nodes of
the standing wave) for four different values of g(x), are observed.
These maxima move away from the nodes with increasing detuning.
For A= *2G, four maxima merge into two and lie on the antinodes
of the standing wave and for |A|>2G no resonances exist and a flat
position distribution over the wavelength domain is obtained.

This is the well-known three-peak Mollow spectrum, the
only difference being the position dependence of the Rabi
frequency.

In the resonance fluorescence spectrum we have three

 peaks centered at A=0 and A==*2g. In our scheme of lo-

calization of an atom we replace the Rabi frequency g with
the position-dependent Rabi frequency g(x)= G sin(xx). The
peaks are now x dependent and are located at A=0 and A
=+ 2G sin(xx). The atom now undergoes a different Rabi
oscillation at a different position in a standing wave and we
get maxima in the position distribution corresponding to
these Rabi frequencies. In Fig. 2 we show a three-
dimensional plot of the conditional position distribution
W(x) for an initially broad wave packet as a function of the
normalized position xx and detuning A. We note that for
zero detuning there is a uniform position probability distri-
bution over the wavelength domain of the standing wave.
This is due to the fact that the atom exhibits a peak at A
=0 for any value of Rabi frequency, and hence for all values
of kx. The heights of the peaks for all values of position are
the same and we therefore obtain a uniform position distri-
bution. Thus the conditional position distribution provides no
information about the atom localization for A=0. An in-
crease in detuning corresponds to the localization of the atom
at different positions inside the standing wave, depending on
the value of the position-dependent Rabi frequency g(x). We
obtain four maxima of same heights and widths in the region
Osxkx<27 located at kx=zxsin ' (AR2G)xnw (n=0,
#+1). For small values of A, these maxima are located neur
the nodes of the standing wave. However, with the increased

A 34 : (16) detuning these peaks move towards the antinodes of the
[A-2g(x)])*+(3T/4)? standing wave. For A= *2G, four maxima merge into two
063806-3
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2.0( @)

(c)

FIG. 3. Conditional position
distribution W(x) with G/I'=10
for (a) A/T'=35, (b) A/I'=10, 1)
AIT=15 and (d) A/l'=2X,

clearly shows the dependence of
position information on the detun-
ing A. The solid line corresponds

() to the conditional position distn-
bution W(x) and the dotted line
corresponds to the standing wave.
Hence position information is
available in the subwavelength
domain of the standing-light field

and lie on the antinodes of the standing wave. Theie are

noresonances for |A|>2G and we obtain a flat posmm dis-
tribution over the wavelength domain.

These results indicate a strong correlation between the
detuning of the scattered light and the position of the atom.
The mgasurement of a particular frequency corresponds to
the localization of the atomi in a subwavelength domain of
the standing wave.

A clearer picture of thc dcpendence of the localization
scheme of an atom on the position-dependent Rabi frequency
and detuning is demonstrated in Figs. 3(a)~3(d), where we
show two-dimensional plots of the conditional position dis-
tribution W(x) as a function of normalized position «x
(ranging from — 77— ) for four different values of detun-
ing. i.e.. A/['=5,10,15,20. The amplitude of the position-
dependent Rabi frequency is taken to be G/T" =10. It is clear
from these plots that the best resolved peak is obtained at
A =G for which the signal-to-background ratio is maximum.
We get a partial overlap of the adjacent peaks for the ranges
0<]A|<G and G<|A|<2G. This causes an enhancement
of the background. The strength of these overlaps and, con-
sequently, the signal-to-background ratio depends on how
much the detuning deviates from the maXimum value of G.
However, a complete overlap is observed for A=0 and
+2G. which corresponds to the node and antinode, respec-
tively.

We also investigate the dependence of the width of the
best resolved peaks, for which the signal-to-background ratio
is maximum. on the amplitude of the position-dependent
Rabi frequency g(x)= G sin(kx) (Fig. 4). It is noted that the
width decreases with the increase in the amplitude G of the
position-dependent Rabi frequency. The figure shows that
the decrease in the width of the peak is very sharp for the
values of G/I' ranging from 2—20. Outside this limit the
width decreases slowly to a certain minimum value and stays
practically asymptotic for G/I">100. This happens because,
in this regime, the amplitude of the Rabi frequency is very

large and the effect of the spontaneous emission, ie. the
linewidth, is minimized.

The spatial resolution in our scheme depends on the ritw
of G/T" and we must get a better spatial resolution for high
Rabi frequency G as compared to the decay rate I'. Apan
from the periodicity of the standing wave which results fou
peaks in a conditional position distribution within a uni
wavelength, a spatial resolution of = A/60 can be achicved
for a ratio of G/I'=10. This is a rcasonable approximatice
for the ratio G/I" because recent experiments in the oplicd
region on the realization of single atoms in the cavity QED
reported a ratio of G/T" of 8 [19] and in a more recent wok
it is enhanced to approximately 20 [20].

Here we mention again that the above power spectrun
gives the conditionai position distribution, i.c., the positios
information is conditioned on the measurement of the fre-
quency of the emitted light. The frequency w of the sponts
neously emitted photon is related to the detuning paranicter
A, as w=w,,~ A, where A= *2g(x). Hence the detecine
of the spontaneously emitted photon gives the iinmeditz
information about the position of the atom inside the opo:

0.9

0.5}

w

0 20 40 50 80
G/I
FIG. 4. Plot of width (w=xAx) versus G/I' for the b
solved peaks (A =G} in the conditional position distribution i
The plot shows a strong dependence of iv on the amplitude .
position-dependent Rabi frequency G.
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alfield. Although the spontaneous-emission process is iso-
ropic in nature and would require the use of 47 detecters in
panciple, for practical purposes it is not necessary to mea-
sure every atom.

PHYSICAL REVIEW A 61 063806
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Amplitude and phase control of spontaneous emission

Fazal Ghafoor,'? Shi-Yao Zhu,” and M. Suhail Zubairy'*
lDepartmem‘ of Electronics, Quaid-i-Azam University, Islamabad, Pakistan
2Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
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We consider spontaneous emission in a four-level atomic system driven by three fields. It is shown that by
controlling the phase and the amplitude of the driving fields a wide variety of spectral behavior can be
obtained, ranging from a very narrow single sp=ctral line to up to six spectral of varying widths.

PACS number(s): 42.50.Gy, 32.80.Qk

L. INTRODUCTION

Spontaneous emission in atomic systems arises due to the
interaction of atoms with environmental modes. It is an in-
teresting area of research to consider various means and sys-
tems to modify and control the spontaneous cmission spec-
trum. We can control the fluorescence spectra by placing
atoms in frequency-dependent reservoirs [1], in microwave
cavities [2], or near the edges of photonic band gaps [3]. For
atoms in free space, atomic coherence and quantum interfer-
ence are the basic mechanisms for controlling the spontane-
ous emission. Control of spontaneous emission in atomic
systems via quantum interference and atomic coherence re-
sults in a number of novel phenomena such as lasing without
inversion [4], electromagnetically induced transparency [5],
correlated spontaneous emission laser [6], absorption cancel-
lation [7]. and enhancement of the index of refraction with
no absorption [8].

The quenching of spontaneous emission in an open
V-type atom was studied in [9]. Phase-dependent effects in
spontaneous emission spectra in a A-type atom were pre-
sented in Ref. [10] and for an atom near the edge of a pho-
tonic band gap in Refs. [11], [12]. Recently, Paspalakis and
Knight proposed a phase control scheme in a four-level atom
driven by two lasers of the same frequencies [13], where the
relative phase of the two lasers was used to get partial can-
cellation, extreme linewidth narrowing, and total cancella-
tion in the spontaneous emission spectrum. In these calcula-
tions, parallel dipoles for the two transitions were assumed.
However, orthogonal dipoles for two transitions with small
energy separation are easily found in nature. Therefore, it is
worth considering the spectral linewidth narrowing and other
effects for the case of two orthogonal dipoles, by controlling
one phase and keeping the other constant.

In this paper we present another scheme for the four-level
atom in which we can control the spontaneous emission by
the amplitude and the phase of the driving fields. In our
scheme, the quantum coherence is generated by a microwave
ficld instead of the sharing of the vacuum modes by the two
transitions. The proposed scheme requires three driving
fields but is more convenient in its experimental realization.

We present analytical results for the spontaneous emis-
sion spectrum of a four-level atom. The upper two levels are
closely spaced and are driven by the microwave field. These
two levels are coupled with a third level via two coherent
fields and decay to the fourth level. All the interactions are

1050-2947/2000/62(1)/013811(7)/$15.00
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assumed to be resonant. We study the various effects of the
dynamical variables, namely, the amplitudes or, more pre-
cisely, the Rabi frequencies and carrier phases, of the driven
fields on the spontaneous emission spectrum. We predict six-
peaks whose spectral behavior will be sensitive to these vari-
ables and for which their control will result in extreme par-
tial cancellation and extreme linewidth narrowing. The
linewidth narrowing is seen in the central peaks of the two
sets of dressed states originating from slow decay rates. This
is in agreement with the work of Zhou and Swain reported in
[18], where they found linewidth narrowing in one of the
dressed states near the quenching condition in the context of
resonance fluorescence of a closed V-type atom. In this paper
we assume that the transition frequency between the upper
two levels is large as compared to their decay rates I'; and
I’,. This approximation allows us to neglect the quantum
interference term proportional to VI';T'; in the equations of
motion for the probability amplitudes. Our system is there-
fore independent of the alignment of the dipole moments.
The trapping condition, however, is not physically achiev-
able in this approximation.

The organization of this paper is as follows. In Sec. II we
present the atomic model, the basic equations of motion, and
their solution for the spontaneous emission spectrum. In Sec.
III we analyze our results and discuss the dynamical vari-
ables that have the most direct influence on the shape of the
spontaneous emission spectrum.

II. MODEL AND EQUATIONS

We consider a system of a four-level atom (see Fig. 1)
interacting with three driving fields. These fields resonantly
couple the transitions |a,)-]b), |a,)-|b), and |a,)-|a,) with
Rabi frequencies Q,, ,, and £, respectively, The upper
levels |a;) and |a,) decay to the lower level |¢) via interac-
tions with the vacuum field modes. The interaction picture
Hamiltonian in the dipole and rotating-wave approximation
is given by -

H(r)=ﬁ((l|lll]><bl+(22|(!:><b'+(2},(11)<1I:i|
+ﬁz (g;(I)e.‘(m,, V“,Iul><('|bk+!~"k-‘"""m:' v

k
x(c|by)+H.c., ' (1

©2000 The American Physical Society
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FIG. 1. Level scheme of the model atom. The bold double arrow
indicates the microwave field coupled with upper levels [a;) and
|a,). The same upper two levels are coupled with [b) via two co-
herent fields and with |c) via common field modes, shown by solid
double arrows and dashed single arrows, respectively.

where by and b are the annihilation and creation operators
for the reservoir modes with wave vector k and frequency
v=clk|=ck, and g{"? are the coupling constants between
the kth mode and the atomic dipoles between levels
la,).]a,) and the level |¢). We assume the coupling con-
stants to be real for the sake of simplicity. Here w,;.,w,, are
the transition frequencies from levels |a,),|a,) to |c), respec-
tively. At any time f, the atom-field state vector can be writ-

ten- as
[W(0)=[A,(1)]a,)+As(1)]az) + B(1)|b)]{0})

+3 i, L

where [{0}) denotes the vacuum of the electromagnetic field.
Using Weisskopf-Wigner theory [14], the equations of mo-
tion for the probability amplitudes are given by

B(1)=—iQXA ()= iQFA(1), 3)
T,
A()=—iQ,B(1)- —Al(t) -iQ3A,5(1)
i \/rz,r,?Az(t)eiwnl, (4)

I,
AN ==iQ,B(N—iQTA (1)~ 5 Az(r)
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where I';(j=1,2) are the radiative decay rates from the up
per two levels to the lower level, respectively, and p denotes
the alignment of the matrix elements of the two dipole mo-
ments and is given by

_ Canltle)-(aslrle) :
P™ e rle)axeleN
If the matrix elements are orthogonal, there is no interference
between the decay paths |a,)-|c) and |a,)-|c) and p=0, and
if the matrix elements are parallel, there is maximum iner-
ference and p=1. We neglect the last terms in Egs. (4) and
(5), however, under the approximation w,>T";, [15].
Next we solve Egs. (3)-(5) for the steady-state expression
for the probability amplitude Cy(#~—2). On integrating Lq.
(6) we obtain

Cy(t—o)=— xg(”.A (s= -—:5.)~lg(2).A2(s= —~id),
(&1

where A;(s) are the Laplace transforms of the probability
amplitudes A;(1)(i=1,2), i.e,

.Ai(s)=J’o Ai(e dr, )

and 8= vy— w,. and §,= vy~ w,.. In the following we use
8= —w .+ /2. We then have 8,=358—w,/2 und 4,
= §+ wy/2. Using the approximation discussed above, tuk-
ing the Laplace transform of Egs. (3)-(5), and using Cram-
er’s rule to evaluate the transformed A;(s), As(s), we gt
the following expression for Cy(t—®):

W Mi(9) 5 M:(9)

Ck(’—"w)——:gk N](a) 8k NZ(5)| “("

where

£
M,(&) 3(0)[0,(5- e LR 5 )+n,n,]

+A,(0)[(é‘-— —2—)(5— 3’3+:r—)-|n,| "

+A2(0)I(5— 3,5)0_,”1792]. (s

]
M2(5)=B(0)[Q,Q§‘+Q:( 5+ —+:—5) i+ A
A L

VI T —iwyat i
e L 3 A:(t)e 128 (5) (5+_ ﬂ”’+ﬂ*wa +A’(0)[ el
= - (“ VK= WM 5 (2) i("lt_“’Zt)l' W) El.)__ 5 i
Cul)=—iA(1)gy iAy(t)gy e ‘ © x(5+—-2—~+z 3 [, :
013811-2
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] ( T wp T
Ni(d)= 0= 5 1-2" 6— 3 +l-2—
r,
—IQ,I((S———+1‘ )—|n2|(5—-‘i'3 17)

_( b %3)|(13|2—(QT0293+Q|Q§Q;)' (13)

W2 W)

5o 22,12
: 2

wy I 2 wyp T
T‘f‘l?)“l()zl'( 5+ '_+l'_')

2 2

-IQ.I'(0+ :

—(,s+ 2210, - (070,0,+0,0500). (14)

To uanalyze the spontaneous emission spectrum we as-
wme the atom to be initially prepared in the state |b) so that
B(())—- l and A (0)=A,(0)=0. The couplm;, constants g“)
and ;',\ " are chosen such that g‘”—‘ )= 1. Further, to ac-
count for the effect of the phase of the microwave field on
the spontaneous emission spectrum, we replace ()3 by
0:fe's. We assume Q, and Q, to be real, ie., Q,;=|Q,]

and 2,=1[€,|. We can then write a general expression of the-

probability amplitude for any values of spectroscopic param-
elers as

i _;c) a,+iB, a2+iB2 a3+iﬂ3
(A= )= 2 7 :
S=(y+idy)  6=(7m+ify) 6—(y3+ifs)
& 04+iﬂ4 05+iﬁ5
O—(ys+ils) O—(ystils)
+i -
agtifs (15)

5_(7(1'*_"{6)'

Here the quantities a;, S;, ¥i, and {;(i=1-6) depend on
the spectroscopic parameters, chosen such that y; and £; are
the real and imaginary parts of \; for i=1-3 and u; for i

=4-6 that satisfy the cubic equations N;(A)=0 and

Ny(u)=0. «,; and B; are the real and imaginary parts of
Y.(i=1-6) that are given by

(Aa=RX3) [

X = 1605 + 10160, e~ [0, 52
.

e QN I o

.\3=———[—)—l—|\l’f)||—2—+|QZ||Q3|('"'—'[Q
+f0||7\:}-
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(M=Ay) [
st__lDTz_(’l'Qll +]Q,[[Qs]e! w_ml' 7

+m,|x3).

r'v 3 5
10 22+, [|Qle i+ [0, 22

X4=(#5‘#6)(

D,

10,

(6= ta)
D

Xy =B 110,12 0 e

1 'Qz|#s) .

_(#4—#5)
D,

X6 (rlﬂl =+ [0,]|Q;]e

+‘Q‘.’|/"h)~

with

D|=)\?(A2_A3)‘i }\%(}\1“)\]‘)"‘)\,%()\1—}\:).’

e 2 2
D= pi(pes— po) + 5 (pe— o) + 3l s = pis) .

The spontaneous emission spectrum S( &) is proportional
to | Cy(t—)|%. Thus, apart from a proportionality constant.

the spontaneous emission spectrum is given by

a,ti a,+ i3, as+i -
Sar, 2D Sllees e
o=(n+if)) o=(nntils) O6-(y3tiiy)
a4+i,84 61’5+iB5
+T'; - )
O—(vatily) o6—(ystids)
a6+iB6 2
S — (16
5= (7o +ile) ’

The spontaneous emission spectrum given in Eq. (16) con-
sists of two parts. Each part corresponds to three peaks as-
sociated with the three dressed states of which it is com-
posed. In Eq. (16), we neglected the interference terms
between the two sets of dressed states corresponding to the
two bare states due to the large scparation between them.
The spectrum therefore consists in general of six peaks lo-
cated at 6=17; (i=1-6). In many situations of interest. the
interference terms occurring in the spectrum equation hatc
negligible contributions: lhus llu hcwhm of the peaks locuated
at 6=y, are given by (a; +,B )/g,‘ for i=1-6.

We examine the condition for trapping in this system. In
order to have a nonvanishing steady-state population in the
upper states of the system, the constant term of its churacter-
istic equation is set to zero. The resulting condition for popu-
lation trapping is

013811-3
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FIG. 2. The spontaneous emission spectra S(J) (in units of
') for Q,.0,,|Q;|=T. ¢=(a) 0, (b) 72, (c) m, (d) 37/2.

210,]124]1025 rcos<¢>+:(m P22 Hln,po
(17

In the last equation, the real part can be zero if ¢=mn/2,
while the vanishing of the imaginary part requires negative
decay rates, which is not physically allowed. There is there-
fore no trapping state in our system. It may be pointed out
that the terms p yT,Tae™“12" occurring in Egs. (4) and (5)
are the sources of quantum interference [17] and contribute
to the trapping conditions. However, in our analysis they are
neglected under the approximation w;,>1I",,. Thus the be-
havior is different from that reported in [13], where the de-

pendence on the alignment of the the dipole moments led to |

trapping conditions. No such conditions exist in our system.
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FIG. 3. The spontaneous emission spectra S(&) (in units ot
=" for Q,,0,=T and |Q3]=0.1T. ¢=(a) 0, (b) 72, (¢) m
3m/2.

III. RESULTS AND DISCUSSION

Our system reduces to the usual form of Autler-Townes
scheme where the spontaneous emission spectrum is spht
into doublets [16] when the atom is initially prepared in the
state |a,) and the Rabi frequencies Q,,{, as well as the
decay rate I'; are equal fo zero. If the atom is initially pre
pared in a coherent superposition of the upper two levels
|¥(0))=(e'¢r|a,;,{0})+]a,.{0}))/V2, and the decay 1t
I', and I', are nonzero, there are four peaks in the spectiu:
originating from dynamical Stark splitting of the upper tw.
levels [19]. The variation of the relative phase of the pus;:
and driving lasers results in a similar effect to the one 1
ported recently [17].

Next we discuss the spectrum as given by Eq. (161 The
equation contains two major parts due to the two bare upjy
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a2,

states. Each part contains three terms corresponding to three
peaks associated with the three dressed states. The equation
therefore leads to a spectral behavior consisting of six peaks.
The interference terms occurring in the equation have negli-
sible contributions. Therefore, the peak heights contributed
by the two bare states are (a;+ B7)/{(i=1~3) and (af,-2
-B3)1&} (i=4-6), respectively. In what follows, we as-
ame gi'=g¢{>'. I',=T,=T, and w,,= 10T". In the follow-
ng discussion the Rabi frequencies 2, Q,, and Q; are
sven in units of I

We consider the effects of the dynamical variables,
wumely, the amplitudes, or more precisely the Rabi frequen-
des, and carrier phases, of the driven fields on the spontane-
ws emission spectrum. The variation of the phase ¢ associ-
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I="for Q,,0,=030 and |Q,)=T. o= (a) 0, (b) /2, (c) m (d)
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FIG. 5. The spontaneous emission spectra S(J) (in units of
™" for Q,,0,=0.1T and [Q;]|=0.5. ¢=(a) /2. (b) 37/2.

ated with the microwave field influences the spontancous
emission spectrum efficiently. In the spectrum equation all
the terms, except the central terms, are significant when
Q,,9,,|/Q3]=1 and ¢=0. The plot for these values shows
an extremely suppressed central peak and enhanced side
peaks. Furthermore. for the two bare states. the height of one
is larger than the other [sce Fig. 2(a)]. The peak heights are
4.2, 0.025, and | for the two bare states. The central terms
reach their maximum when ¢ is varied from 0 to /2 in Fig.
2(a). Now all terms are significant. In this case, the plot
shows a suppressed central peak and equally enhaniced side
peaks for the one bare state and vice versa for the second
[see Fig. 2(b)]. Here the peak heights are 0.80, 0.28, 0.80 and
1.35, 2.25, 1.35 for the two bare states. When ¢ is further
varied from 7/2 to = in Fig. 2(b), the new spectrum is just
the mirror inversion of Fig. 2(a) [see Fig. 2(¢)]. and we get
the mirror inversion of Fig. 2(b) if ¢ is varied to 37/2 [sce
Fig. 2(d)]. We note that the peak height varies with ¢: how-
ever, there is no appreciable change in the position of the
spectral lines on the frequency axes. This behavior is in
agreement with the coherently driven three-level A~tspe
atom of Martinez et al, [10]. Moreover. the occurrence of
mirror image at ¢+ 7 also agrees with the said reference.
The enhancement around /2. 37/2 and strong suppres.ion
around 0,7 of the central peaks is in accord with the work o
Paspalakis and Knight reported recently. where they used thie
relative phase of two lasers of the same frequencizs to cons
trol the threc-peak spontancous emission spectrum in o
level atom [13].

The shape of ihe spontaneous emission spectruny is
strongly influenced by the variation of the Rabi freguencies.

C13811-5
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For instance, when the Rabi frequency |Q3| in Fig. 2(a) is
reduzed to 0.1 (with Q,,Q,=1) and ¢ =0, the contributions
of the central terms are negligible. This is also evident from
the plot, where the central peaks are extremely suppressed
and the side peaks are enhanced; moreover, the height of one
side peak is slightly larger than the other [see Fig. 3(a)]. The
central terms still remain negligible when ¢ is varied from 0
to 72 in Fig. 3(a). We find an extremely suppressed central
peak but equally enhanced side peaks [see Fig. 3(b)]. When
¢ is further varied from 7/2 to 7 in Fig. 3(b), the new spec-
trum is just the mirror inversion of Fig. 3(a) [see Fig. 3(c)]
and we get the mirror of Fig. 3(b) if ¢ is varied to 37/2 [see
Fig. 3(d)]. The decrease (increase) of the Rabi frequency
|2 ;| depopulates (populates) the central dressed states of the
two bare states and therefore, for the optimum value of the
Rabi frequency, the spontaneous decay rates become negli-
gible (maximum).

It is worth noting that the height of the central peaks
increases and the side peaks decrease with decrease in the
Rabi frequencies 2, and Q,. In addition, the width of the
central peaks gets extremely narrow for low values of the
Rabi ‘requencies, whereas the side peaks are suppressed al-
most completely. For example, when ,,02,=0.3 in Fig.
2(a), the central terms dominate over the others. The plot
shows extremely suppressed side peaks and equally en-
hanced central peaks. Moreover, a remarkable spectral nar-
rowing is also seen [see Fig. 4(a)]. The peak heights in this
case are 9X 10™%, 17, 0.6 for the two bare states. On vary-
ing ¢ from 0 to 7/2, one of the central terms increases while
the other decreases. This is also clear from the plot, where
the cetral peaks are enhanced and one peak is larger than
.. the other [see Fig. 4(b)]. In this case the peak heights are
0.03. 2.8, 0.03 and [.5, 24.6, 1.5 for the two bare states.

PHYSICAL REVIEW A 62 013811

When ¢ is further varied from 7/2 to r, the new spectrum is
just the mirror inversion of Fig. 4(a) [see Fig. 4(c)] and we
get the mirror inversion of Fig. 4(b) if ¢ is varied to 3m/2
[see Fig. 4(d)]. We note that the width of the lines emanating
from the central dressed states becomes extremely narrow
when the Rabi frequencies are further reduced. This spectral
narrowing is associated with slow decay rates. The result
agrees with that of Zhou and Swain [18] in obtaining line-
width narrowing-of one of the dressed states ncar the quench-
ing condition in the context of resonance fluorescence of
closed V-type atom. Decrease.(increase) of the Rabi frequen-
cies 0, and Q,, depopulates (populates) the side dressed
states of the two bare states and hence, for optimum values
of the Rabi frequencies, the spontaneous decay rates from the
states become negligible (maximum).

Obviously, the width and the peak height are strongly
influenced by variation of the Rabi frequencies. It is interest-
ing to note that, in Fig. 4(b), the central peak of one bare
state starts almost to disappear when the Rabi frequencies
Q,,Q, are kept at their lowest values and [Q,] is reduced,
For instance, if 0;,2,=0.1, |Q3]=0.5, and ¢=7/2, the
heights of the three peaks of one bare state are 0.05 with
narrow central peak, whereas for the second bare state the
heights are 87 for the central peak and 0.05 for the side peiks
[see Fig. 5(a)]. When ¢ is varied from /2 to 37/2 in Fig.
5(a), the new spectrum is just the mirror inversion of the old
one [see Fig. 5(b)].

In summary, we have shown that by choosing appropriate
parameters for the amplitude and the phase of the driving
fields, we can obtain a very wide variety of spectral behavior
ranging from a very narrow spectral line to up to six spectrai
lines of varying widths. The present system is very casily
realizable experimentally.
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Quantum-state tomography using phase-sensitive amplification
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We propose a model for the quantum-state measurement via phase-sensitive amplification. The basic idea is
to amplify the quantum state through a two-photon correlated-emission laser, such that there is no noise in the
quadrature of interest and all the noise is fed into the conjugate quadrature. The noise-free quadrature is
prepared in different phases and then corresponding quadrature distribution is measured. The Wigner function
of the initial quantum state is then reconstructed by carrying out inverse Radon transformation familiar in
tomographic imaging. This scheme allows us to avoid the deterioration of homodyne detection measurement

due to the problem of detector efficiency.
PACS number(s): 42.50.Dv, 42.50.Ct
I. INTRODUCTION
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Quantum-state measurement has been a subject ‘of great
interest in recent years [1-4]. As all the information of a
quantum system is contained in the density matrix p of the
system, so the measurement of the density matrix elements
will completely characterize the given quantum state. The
Wigner function of a quantum state bears a one-to-one cor-
respondence with the density matrix p of the state [5). Once
the. Wigner function of a quantum state is known then the
corresponding density matrix elements of the state can be
worked out by employing the Wigner formula [6,7], On the
measurement side, a balanced homodyne detector measures
the linear combination of the creation and the annihilation
operators {$[a'exp(if)+aexp(—if)]} of a quantized- field
[8.9]. This linear combination of creation and annihilation

operators is also termed as the generalized or rotated quadra-_

ture of the field and the phase ¢ of this quadrature is given by
the phase of the local oscillator in the balanced homodyne
detection scheme. Two specific phases, §=0 and 6= /2, of
this generalized quadrature x(6) are the same quadrature
phases x(0) and x(7/2) as have been introduced in r'qlation
to squeezed and coherent states of a field [6,10].
Vogel and Risken [11] have shown that the quasiprobabil-
ity distributions such as P, Q, and the Wigner function bear
a one-to-one correspondence with the generalized quadrature
distribution function w(x, #). From a set 6f measurements of
the generalized quadrature amplitude x(6) in the balanced
homodyne detection scheme, the quadrature distribution
w(x,8) can be known, and hence by tomographic imaging of
this distribution, the P, Q, and the Wigner function can be
obtained. Following the same scheme, Faridani er al. [12]
and later Mlynek er al. [13] have experimentally measured
the quantum state of the radiation field. Recently, some other
methods have also been proposed for the measurement of the
quantum state of the radiation field. These include methods
based on absorption and emission spectroscopy [14], the

*Present address: Department of Physics, Texas A&M University,
College Station, TX 77843.
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conditional measurements on the atoms in a micromaser
[15]), dispersive atom-field coupling in Ramsey method of
separated oscillatory fields [16], as well as some others [17).

However, the quantum objects are highly feeble and deli-
cate entities. Their subtleties remain highly obscured in the
measurement process owing much to the detectors inefficicn-
cies. In some recent studies, it is shown that the measured
quadrature distribution w(x, 8) becomes smoothed due to the
finite detection efficiency [18,19]. As a result, instead of the
Wigner function, smoothed quasiprobabilities are con-
structed [19]. In this paper, we propose a scheme for the
measurement of quantum state of the radiation field using
two-photon correlated-emission laser (CEL) [20-25]. During
the amplification through a phase-sensitive amplifier, there is
no noise in the quadrature of interest and all the noise is fed
into the conjugate quadrature. Therefore, the quantum infor-
mation remains intact in one quadrature phase of the ficld
and may be extracted out of it for the construction of quan-
tum state of the field.

In order to construct the Wigner function of the quantum
state, we require a set of distribution functions w(x,8) for
quadrature values x( 6) for 8 varying from 0 to 7. To obtain
noise-free amplification for different quadrature phases, we
prepare the amplifier in different phases ¢, accordingly. We
have calculated the quadrature distributions for any arbitrary
quantum state after its amplification through a phase-
sensitive amplifier. The distribution function of the noise-
free quadrature is then used to construct the Wigner function
of the quantum state using quantum tomography. We apply
this model to a Schrodinger cat state [26] and discuss the
reconstruction of the corresponding Wigner function after its
amplification through a: two-photon CEL. Our proposed
method is insensitive to detector. efficiency which poses w
rious problems in observing the nonclassical features assoc
ated with the quantum state. In a recent paper. we haw
shown that the quantum interferences associated with o
Schrodinger cat state can be observed using phase-sensitive
linear amplification [27]. It may be pointed out that the
phase-sensitive amplification of the Schrodinger cat state and
the resulting nonclassical characteristics during the ampliti-
cation process are discussed in Refs. [25.28].

©2000 The American Physical Socrets
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II. MEASUREMENT OF THE QUANTUM STATE
USING TWO-PHOTON CEL

We consider a two-photon phase sensitive linear amplifier
[20], which consists of three-level atoms in cascade configu-
ration. The atoms are initially prepared in a coherent super-
position of levels |a) and |c), i.e., the initial density operator
for the atoms is given by

Pi= paal“)(“' +Pnc|a)(cl +pcalc><a| +pcclc)(cl-" (l)

We assume that such atoms are injected at a random injec-
tion rate R inside the cavity where they interact with the field
for a time 7 (see Fig. 1). It is assumed that the cavity field is
resonant with the atomic transitions |a)~|b) and |b)—|c)
and R7<1 such that there is only one atom at a time inside
the cavity. The evolution of the reduced density matrix of the
field pr is given by the following master equation [6]:

. A + t t
p =—§(N+l)[aa pr—2a'pra+praa’]
A it ot t t
-—EN[a apr—2apra’+pra’al
A *
- E'M [aapp—2apra+PFaa]
A 3 % tooat tat
—-—Z-M[a a'pp—2a'pra’+ppa‘a’l, 2

where A=Rg?7(p,,— pec) is the gain coefficient. Here g is
the atom-field interaction constant and p,, and p.. are the
density matrix elements corresponding to atom in level a and
¢, respectively. The constants N and M are defined as

pCl‘
N=———,
(paa—pcc) :
3)
Pac

M=,
(D2 0c0)

the terms proportional to M contain the phase-sensitivity of

the coherent atomic superposition.
The Wigner function W(a,t) is defined in terms of the

density operator pg by [6]

1
(G- )V(N+172)*=|M[?]

W.(.t:8.0)=
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two-photon CEL

state
preparation

— — — —

=T O

detector 2 D
@D 4 local oscillator
oo »
i ﬁ detector 1

FIG. 1. The schematic diagram of the two-photon phase-
sensitive linear amplifier and the measurement of the noise free
quadrature via balanced homodyne detection scheme.

‘W(a.t)=1r‘2f~+xf_+=d2ﬂ Tr{exp[ — B(a*—a")

+pB*(a—a)lpr}- 4)

The master equation (2) for the reduced density matrix pg
can be rewritten as the following Fokker-Planck equation for
the Wigner function:

aW Al a +a R a
o 5. 2loe .ok Ja’
w4 2
+M*—— =2(N+1/2) WS
da*” dada

A solution of this equation yields the evolution of the
Wigner function for any arbitrary initial quantum state [29]

W(a.r)-=fwf+wd2ﬂW(ﬁ.O)W¢(a.r;ﬁ.0). 6)

where the conditional probability W (a,t;3,0) reads as

(|alcos(®— @/2) ~ VG| B|cos( 6y~ ¢/2)* _ [alsin(d—¢/2)~ VG|Blsin(6o— ¢/2)]° o

Xexp| —

[N+12=|M[)(G-1)

[N+12+|M[)(G-1)

%q 043814-2
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Here G =exp(Ar) is defined as the gain factor and the com-
plex quantities a, B, and p,. are expressed in the polar
forms as. a=|alexp(i¥). B=|Blexp(iy), and p,.
=|p..lexplig). In the case of perfect coherence we have the
relation |p,.|= Vp,ap.. We therefore, define a squeezing
parameter r such that [30]

@)

tanh*r=
aa

In terms of the squeezing parameter 7, the constants N and
|M] are defined as

PHYSICAL REVIEW A 62 043814

Here we look at the measurement of the quadrature dis-
tribution w(x,8) for the amplified quantum state. A homo-
dyne detector measures the quadrature component

(ate+ae™1?)
x(0)=x(8)' = ——s5——. (10

In a balanced homodyne experiment, # can be varied by
shifting the local oscillator phase. A complete distribution
for x(8) is given by the quadrature distribution w(x,8).
Such distributions have recently been measured employing

N=sinh*(r), quantum optical tomography.
: The quadrature distribution w(x,#) for the amplified field
M| = sinh( 2r). 9 ¢an be obtained from the Wigner function W(a,r) by using
2 the following relation [11]:
e |
| £ L) L]
w(rx, 0)= E;J’ j J’ d?ad nW( a,t)exp[ — i n(x— a,cos 8— a,sin 6) ], (n

On substituting for W(a,t) from Eq. (6) into Eq. (11), we obtain w(x, 8) for the amplified quantum state

o (e 3 —2(x~\/z}'_(ﬂ,,cos 6+ B,sin 6))*
1 L" "W(ﬁ"’"""{(c—l)[N+u:’—!M|cos(ze—w1 '

(12)

] 1
w(x.0)= \/’; WG-1)[N+ lQ-lM[cos(Zﬂ— ®)]

Equation (12) indicates a one-to-one correspondence between the phase ¢ of the atomic coherence and the phase 8 of the field:

guadrature. In order to reconstruct the Wigner function of the initial quantum state, we need a set of distribution function
w(x.8) for different values of # varying from 0 to . :

The Wigner function can be constructed by amplifying the signal such that there is no noise in the desired quadrature and
all the noise is fed into the conjugate quadrature. It follows from Eq. (12) that an amplified signal without added noise in the
quadrature x(6) can be obtained if we choose 26— ¢@=0. To obtain the noise free amplification, we prepare the atoms in a
coherent superposition of levels [a) and |c) with a particular phase ¢. The atoms are then injected inside the cavity where they
amplify the initial quantum state. The noise free quadrature can be obtained by adjusting the phase of the local oscillator ¢
such that 8= ¢/2. To find the complete set of distributions w(x,#), we prepare the amplifier for a set of values of atomic
coherent superposition phases ¢ ranging from 0 to 27 and obtain noise free amplification for the desired quadratures. The
Wigner function can then be reconstructed from the measured values of w(x,6).

The noise-free quadrature distribution is given by '

—2(x— J/G[ B,cos 6+ B,sin 6])° b
(G—=1)exp(—2r) : Z

2 1 2 4@ [+x
=1/ : 12BW(B,0 (
w(x,6) \/; (G—l-)exp_(_—2r)f~°° f_,,‘ BW(B,0)exp

where we have used

(G—1)(N+ 172~ |M|)=112(G - 1)exp(— 2r). (14)

Here r is the squeezing parameter.
i - . . . ) > . 7
Once the quadrature distributions of the amplified -signal are measured in balanced Homodyne measurement. then the

complete Wigner function is determined by carrying out the inverse Radon transformation familiar in tomographic imaging
[11].
1 £ kS T : 2
Wia, .a;)= -—.,f j f w(x, )| nlexpli n(x— a cos = a,sin 6) Jdx d ndb. (i
: 4t -=t-=Jo :

In order 10 obtain the Wigner function of the amplified state, we substitute Eq. (13) into Eq. (15). and readily find W(a, .a
to be given by the following relation:

63 043814-3
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Waay=— [ [" [ [ pandowsolal

(G—1)exp(—2r)

Xexp( - 3 7 —in[(a,— \/Eﬁ,)cos dfa,— Jaﬁ}.)sin a]]. (16)

for G=1, we obtain the Wigner function for the original state.
In terms of the rescaled variables a’=a, /\/G and a,= a’.l‘f@. Eq. (16) reduces as

l 3 o o "
wa.ad=—[" [" [* ["apanaowipolr|
4mel-=J-=J-wlo

1 —-1/G)exp(—2 .
Xexp( bt G)g P2 n =in'[(a;—B,)cos 0+ (a;—B,)sin ] |. (17)
for sufficiently large squeezing, i.e., for r— =, we obtain the same original state for any arbitrary value of the gain parameter
6>1. This shows that the proposed scheme allows us to fully reconstruct the original quantum state after its amplification
frough a phase-sensitive linear amplificr. However, an appropnatc rescaling of the measured distribution is required.
As an example, we consider the Schrodinger cat state, which is the superposition of two coherent states |&p) and |— &),
shich are 180° out of phase with respect to each other,

Wo=VN[|éo)+ |- £o)]. (18)

where N~ '=2[1 +exp(—2§2))] is the constant of normalization and & is taken as real for the sake of simplicity. The Wigner
inction W(B,0) of this state is defined as [31]

=

W(B.0)= {expl —2(B.— £&0)* 2821 +exp[ —2( B, + £)*~ 2871+ 2 exp(— 2B; ~ 2 B})cos(4 £,8,)}-

(19)

[ 1 +exp(-2§§)]

The Wigner function of the amplified Schrodinger cat state can be obtained by using the expression for W(8,0) in Eq. (17).
i terms of the rescaled variables a;= a,/\G and - a,/JE. it is given by the following:

1+(1-1/G)exp(—2r)] ,
J‘ qude]”"up( [»( 8)exp r)]”,_

’

j W(a,,a;)= l
: 871 +exp(— 250)]

—[1+{1=-1/G)exp(—2r)]
8

—in'[(ay+ &)cog 6+ a,sin 0]) + exp( n'2=in'[(a,~ &)cos 8+ a;sin 6]

1 e Te{l=1/G -2 “
. +cxp(-—2§§)x[e_ i 5 JeaptEatn 7' =in'[aycos 0+ (ay+i&y)sin 6])
~{1+(1-1/GC =2
+exp( il 3 Jetpcn 2] n'?~in'[acos 0+ (a,—i&)sin (1]) } (20)

I '

1is clear that for sufficiently large squeezing, i.e., r—%, IIL. RESULTS AND DISCUSSION

ad tor any arbitrary value of the gain parameter G=> 1, we
btain the Wigner function W(a, ,a,) for the initial Schro-
finger cat state which is quite interesting. In the next section,
ve present the results of our numerical simulation for differ-
at values of the squeezing parameter » and for G=1 and
0.

Here we present the results obtained after integrating Eq.
(20). In Fig. 2(a), we show the plots of Wigner function for
£0=2 and G=1. The figure clearly shows twe Gaussian
hills at a,= =2, which is the location of two coherent states
and oscillations on the conjugate axis due to the superposi-
tion of two coherent states. This is the well known behavior

GV 0438144
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FIG. 2. Plot of the Wigner distribution W(a,,a,) for the Schrodinger cat state. (a) For =2 and G=1. Here we obtain the well known
structure associated with the Wigner function for Schrodinger cat state, In (b)~(f), we show the plots of ¢

5 he Wigner function for &=

G=10r=0 (phase-insensitive amplifier), and r=1, 2, 3 and 4, respectively. The plots clearly show that Wigner function of the initial state

almost fully recovered with the increase in the squeezing parameter .

associated with the Schrodinger cat state. In Figs. 2(b)-2(f),
we plot the Wigner function for &=2, G=10, and r
=0.1.2.3, and 4, respectively. Figure 2(b) clearly shows that
the well known oscillations due to the Schrodinger cat state
vanish when it is amplified through a phase insensitive am-
plifier. However, for r=1 and 2 [see Figs. 2(c) and 2(d)] the
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oscillations start appearing which is quite interesting, o
strong enough Squeezing, i.e., r=3 and r=4, we almot
fully recover the Wigner function corresponding to initial
Schrodinger cat state. These results confirm our assertion
that amplifying the signal with the help of a phase-sensitive
linear amplifier allows us to fully reconstruct the original
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3 measured distribution is needed.

The Wigner function is reconstructed by taking the in-
verse Radon transform, once the quadrature distributicns are
measured after amplification through two-photon CEL. The
quadrature distributions can be measured using:balanced ho-
modyne detection scheme. The parameters in the experiment
should be adjusted such that field leakage through the end
mirror does not occur during the amplification process. We
Peer and G=exp(Ar), combining these
two we obtain

ey InG
Rg_z'rz(pﬂﬁ— p(’C) :

which is the total amplification time. In order to ensure that
cavity field does not leak through the end mirrors during the
amplification, the time ¢ should be small compared to the
cavity life time 7, i.e., t<7,.

21
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In conclusion, we propose a scheme to measure the quan-
tum state of the radiation field. The technique is based on
amplifying the signal with the help of a two-photon CEL
such that there is no noise in the quadrature of interest. Oyr
scheme is insensitive to problems associated with the detec
tor inefficiencies. In a recent paper, Lenohardt and Paul [32]
have also proposed an interesting scheme based on anti-
squeezing the field with respect to the desired quadrature
using degenerate optical parameter amplifier that also allows
to overcome the problem of detector efficiency.
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Abstract

We propose a method to measure the photon statistics of a quantized radiation field in an electromagnetically induced
transparency setup. The proposed method provides a direct way of measunng the photon statistics. This method is insensitive

to the detector efficiency. (© 1998 Elsevier Science B.V.

Electromagnetically induced transparency (EIT)
was first observed by Harris [1,2]. Since then this
cffect has been studied intensively both theoretically
and cxperimentally [3-5]. The theoretical studies as-
sume the driving field to be classical. In this paper we
study EIT by a quantized driving field inside a cav-
ity and show that the absorption spectrum provides
a direct means of measuring the photon statistics of
the ficld. This method of measuring the photon statis-

tics has the advantage that the photon statistics of -

the radiation field can be directly measured from the
spectrum without resorting to cumbersome numerical
manipulations of the experimental data. In addition,

the proposed method is insensitive to the detector:

cfficiency which poses serious problems in observing
nonclassical characteristics of the field.

The quantum state of the rddiation field is described
completely by the state vector |¢f) for a pure state and
by the density operator p for a mixed state. The diago-
nal clements of the density operator with réspect to the
Fock state gives the photon distribution function. The
photon distribution for many fields may demonstrate
novel nonclassical features such as an oscillatory be-

PIIS0375-9601(98)00805-6

SV

havior in the case of single-mode squeezed vacuum
state [6] or the Schrodinger-cat state [7]. It is a prob-
lem of recent interest to experimentally observe such
nonclassical features of the quantum state of the radi-
ation fieid.

The quantum state of the field is also determined by
using optical homodyne tomography [8-10], which
uses measured distributions of clectric field quadra-
ture amplitude to determine the Wigner function and
hence the density matrix. From the knowledge of the
density matrix, information about photon number and
phase distributions is- obtained. It has also been re-
alized experimentally [11]. Other schemes include
methods based on dispersive atom-field coupling in a
Ramsey method of separated oscillatory fields [12],
atomic beam deflection [ 13], the conditional measure-
ments on the atoms in a micromaser set-up [ 14], the
Autler-Townes spectroscopy [ 15], resonance fluores-
cence [ 16], homodyning [ 17], unbalanced homodyn-
ing [ 18], photon chopping [19], and photon count-
ing [20].

In this paper, we propose a scheme to determine the
photon statistics of the radiation field inside a cavity

0375.0601 79878 - see [ront matter © 1998 Elsevier Science B.Y. All rights reserved.
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using a set-up that is employed in the observation of
electromagnetically induced transparency (EIT). In
EIT, a three-level atomic system is considered. When
the upper levels are driven by a classical field, the
medium becomes transparent for a probe field resonant
with the lower level transition [21]. The transparency
results from the combined Stark splitting and quantum
interference of the dressed states which are created
by applying that additional clectromagnetic field. The
splitting of the levei is proportionai to the associated
Rabi frequency. Heights of the peaks of the absorption
spectrum are independent of the Rabi frequency. Peaks
arc displaced from resonance by an amount equal to
the Rabi frequency. If the upper levels are being driven
by a quantized field, the associated Rabi frequencies
arc distributed according to the photon distribution of
the driving field. The absorption spectrum would thus
mimic the photon distribution function of the driving
ficld which can thercfore be recovered from the spec-
trum. The condition under which the photon distribu-
tion function of the driving field could be recovered is
that the associated vacuum Rabi frequency should be
larger than the -atomic decay rates.

The method to determinc the photon statistics based
on Autler-Townes spectroscopy [15] is closely re-
lated to the one discussed in this paper. Another closely
rclated scheme which has been experimentally real-
ized for the determination of photon statistics is that
of quantum Rabi oscillaticn [22]. Rabi oscillations
have been observed in vacuum and in small coherent
ficlds. Its Fourier componcnts show the discrete na-
turc of the ficld and the weighted Fourier components
yicld the photon number distribution in the field.

We consider a system of three-level atoms (see
Fig. 1) initially in the ground state |b) interacting with
a quantized radiation field inside a cavity. The upper
levels |a) and |c) of the atom are driven by the cavity
ficld which is quantized. We are interested in finding
the photon statistics of the field. This is done by prob-
ing the absorption spectrur1 of the |b)-|a) transition
via a classical probe field of frequency ». The decay
rates from levels |a) and |¢! are assumed to be y, and
¥.. respectively. The Hamiitonian for this system, in
the dipole approximation «nd the rotating-wave ap-
proximation, is given by

65

ja> e
\ quantized flel(i-‘\
lc>

Probe v

1b>

Fig. 1. Level scheme for the atom.

H= fi.Zw,-li)(il - fnjaTa + hg(|a){cla + c.c.)
i

= S pasela)(ble™ + c.c.), (n

where i = a, b, c represents the three atomic levels
with w; being the transition frequency from the re-
spective levels, the coupling constant g is the vacuum
Rabi frequency between the levels |a) and |c), @ and
a' are the annihilation and creation operators of the
cavity field, ¢ is the amplitude of the probe field, and
the corresponding dipole transition matrix element is
represented by (. :

As the atoms are prepared initially in the ground

oy : 0) ol
state ]b), we have Ponpn - = Pnan and p((m.)un =
pg,)l,'(.,m = 0. We now show that the photon statistics

of the radiation field inside the cavity can be deter-
mined by looking at the absorption spectrum at the
|b)—|a) transition.

The polarization of the medium is given by

P =eoxe = pal par + c.cil : 2y

Here y is the linear susceptibility whose real part is
related to dispersion and the imaginary part gives the
absorption spectrum. It is clear from this equation that.
in order to find the susceptibility, we first need to de-
termine the matrix element pg, pn. A sum over n would
give pap, and hence y. .

The matrix elements puypn and peya1.bn form the
following coupled set of differential equations.

dpau.hn
dt ‘
o i(pabs/zh)e_w’(pun.an o plm.lm)

— igV n-kl Pen+1.bns {33

: |
= —(1@ap + 37a) Pan.bn
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dpen+1.om S
((‘; 5 _(lwdj > %‘yf)an-H.lm

o= i(pabe/zﬁ)c_mpcni»I,an —igvn t pan i (4)

As we are interested in the linear susceptibility, we re-
tain the matrix elements puy.ans Pbibns ANA Peyt1.an ON
the left-hand side up to zeroth order in the field am-

plitude e. We therefore make the substitutions /’1(;2)/;” =

0 0 s :
Pun and p0 = p» . = 0. The slowly varying
matrix elements o an (1) = par p (1) exp(ivet) then
satisty the foilowing equations of motion,

d an.bi 1
p'#”\() —(i6 + 770)/’«:11[)7;‘(!)

s i(ﬁ')(JIrE/Zﬁ')pll.lr = 18 v+ | ﬁ(‘/l { I.I).ml(’) ) (5)

d ~L‘l K !
il%&l ~(i6 + 57e) Peat1.om (1)

IQV’I T prm lrm(f) (6)

where § = w,;, — v is the detuning.
Egs. (5) and (6) can be written in a compact form

as
P(t)=-MP(1) + 0, -
where
& /31111./7"' (1)
P(t) = ,:/')”, t1bmCE) ]

igVn+1 i6+7vy./2
D= {(i(‘rII:S/ZH)pl:.II} : : (8)

i [i5+)’u/2 igvn+ 1 ]

0

A steady-state solution of Eq. (7) is given by

P(t)=M""'Q. 9)

The matrix element p,, - can be determined from Eq.
(9). It follows, on taking a trace over the field states,
that

lD(I)
AMU—‘éz:UO

n

(id6 + 7¢/2)e""’ :
(15 + ¥a/2) (I8 +7c/2) + g2 (n+ 1)’

where p(n) = py, is the photon distribution function
of the driving ficld inside the cavity.

(10)

The complex susceptibility y of the medium can
be determined using Egs. (2) and (10). The real and
imaginary parts of the complex susceptibility are

/(5) lpuhlzé (
= — D(n
o 460ﬁ ! 2
Ye(Ya+ ) [2+2[8 = @(n+ 1) = y,7./4]
182 = g2(n + 1) = ¥a¥e/41% + 8 (ya + y) /4
(1)

Y'(8 |$<7ub Zp( )

+ ')’117('/4‘ 4 52(7“ ¥
71!7('/4]2 + 52(71: + 7(')2/4 ;
(12)

*/(lg'(nﬂ) ~
[5’ - (n+1) -

For exact resonance (6 = 0) and y. < v,. both the
real and imaginary parts of the.susceptibility vanish.
The medium therefore becomes transparent. This is
the condition of the electromagnetically induced trans-
parency. This result is valid for arbitrary photon statis-
tics of the driving field.

Eq. (12) can be rewritten as

x%®—§:mmX<& (13)

Thc function y!/(8) has double peaks located at § =

£gv/n + 1. The height of both the peaks is propor-
tional to 1/y,. An important and interesting fact is
that the height of the peaks is independent of the ex-
citation number n. For a plot of (&) versus 6> — g°.
there is only one peak located at g2n.

Including the contributions from all the photon cx-
citations in the photon distribution function p(n) and
in the limit that the dccay rate y, is much less than
the.,vacuum Rabi frequency g of the driving field, we
get the complete absorption spectrum, as shown in Eq.
(13). This absorption spectrum ( y”(8) versus 6%)
will mimic the photon distribution functien p(n).

We next illustrate our results by considering the
example of a Schrodinger-cat state which is a coherent
superposition of two cohcrent states, i.e.,

¥ == (la) + - a)), _ (14)
where
N =2(1 + el (15)
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Fig. 2. (a) The photon distribution function of a Schrodinger-cat
state p(n) versus 1 at @ =4, (b) The corresponding absorption
spectrum ¥/ (in arbitrary units) plotted against 82 /g? — | with
ya/e = 0.1 and y./g = 0.0001. (¢) The recovered photon distri-

“bution from the spectrunt y”’.

is the normalization constant. Here a is assumed
to be real. The phioton distribution function of the
Schradinger-cat state is given b

p(n) =4e”1a? /N'n!,  when n is even,

=) when n is odd, (16)
The photon distribution is thus ¢ n oscillatory function
ol 1. These oscillations arc man. festations of nonclas-

sical features of the quantum statistics.
In Fig. 2a, the photon distribution function p(n) is

G

plotted against n. The corresponding absorption spec-
trum x"(8) versus 8°/g* — 1 is plotted in Fig. 2t
The photon distribution function, recovered from the
absorption spectrum in the same way as mentioned
above, is given in Fig. 2¢.”

This scheme for the measurement of photon statis-
tics through EIT is feasible within the presently acces-
sible experimental limits [23]. A small Fabry-Perot
cavity, as reported by Hood et al. [24], wherc a single
atom interacts with a cavity field, is appropriate for
our scheme. Here g = 60 x 277 MHz, which is deter-
mined by the cavity geometry, and the atomic decay
ralc y = 2.6 x 27 MHz. These values are in accordance
with the condition required by our scheme that g >
v in order to resolve the peaks of the photon distri-
bution clearly. An improvement would be required as
far as the cavity interaction time is concerned, which
is small in this casc, contrary to our requirement. In
the microwave region, however, a large cavity inter-
action time 7. has been observed in addition to the
desired values of ¢ and ¥ [25]. The values are ¢ =
17 x 2 MHz, 7. = 6 X 27’ kHz and y = 5% 27 H7.
One discrepancy, however, has not been encountered
here; the values of g and 7y referred to here are for the
same two levels, which is not our case.

In this paper we have discussed a method based
on absorption spectrum to measure the photon statis- #
tics of the radiation ficld using clectromagnetically in-
duced transparency. This is a conceptually simple and
direct method and involves no cumbersome numerical
inversions like that used in some other schemes for
the same purpose. Another advantage of this method
is that it is inscnsitive to the detector efficiency, which
can create serious problems in the observation of non-
classical features of the quantum states.
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Quantum teleportation of an entangled state
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We consider the teleportation of entangled two-particle and multiparticie states and present a scheme for the
teleportation that may be suitable for both entangled atomic states or field states inside high-Q cavities.

PACS number(s): 03.67.Hk, 03.65.Bz

I. INTRODUCTION

The notions of coherent superposition and entanglement

in quantum mechanics lie at the conceptual foundation of
quantum mechanics as evident through fundamental contri-
butions like bell inequalities [1] and Greenberger-Horne-
Zeilinger (GHZ) equalities [2]. These alternative concepts
are [inding interesting and useful applications in the field of
quantum computing and quantum information.

One of thé key problems in quantum communication is
how to transmit a quantum state from one observer to an-
other and keep the received state exactly the same as that
sent without necessitating the movement of an information
carrier. This can be accomplished in two steps. First, the
sender ‘‘disassembles’’ information of a quantum state into
two parts, one of which is sent through a quantum channel
run by the nonlocal correlation between two entangled quan-
tum entities, and the other of which is sent through a classi-
cal channel. Second, the receiver ‘‘reconstructs’’ the state on
the basis of information from both the quantum and classical
channels. Because in this process a quantum state to be trans-
mitted is destroyed in one place and later reconstructed in
another place, this transmission is termed as teleportation of
a quantum state. Bennett er al. [3] proposed a scheme for the
teleportation of an unknown quantum state from one ob-
server to another through dual Einstein-Podolsky-Rosen
(EPR) and classical channels.

Since this proposal was made, a number of experimen-
tally feasible schemes have been suggested for the teleporta-
tion of two-level atomic states {4—13] and field states [14—
16] for two-dimensional states to N-dimensional states [17].
Most of these schemes rely on methods based on cavity
quantum electrodynamics in which two identical high-Q
cavities are initially prepared in an entangled state. Quantum
telcportation was experimentally verified by producing pairs
of cntangled photons through the process of parametric
down-conversion [18]. Recently, a scheme has been pre-
sented that exploits the cavity decay for the teleportation of
the atomic state of an atom trapped in a leaky cavity [19]. In
addition to these schemes of discrete variables, much
progress has also been made for the quantum teleportation of
states of dynamical variables with continuous spectra [20-

*Permanent address: Applied Physics Division, Pakistan Institute
of Nuclear Science and Technology, P.O. Nilore, Islamabad, Paki-
stan.
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22]. The teleportation of a coherent state of the radiatic
field [23] and the teleportation of a superposition of chir
amplitudes have also been reported [24].

All these schemes are for the teleportation of single-qub
states. In many potential applications of quantum computing
such as factorizing a very large number [25] or searching a
unordered quantum database [26], one needs the system ¢
many-qubit states. It is therefore an interesting questio
whether we can teleport a multiqubit state. In this paper, w
present a scheme for the teleportation of a two-particle (two
qubit) entangled state from a pair of high-Q cavities to un
other pair of high-Q cavities using methods based on cavit:
quantum electrodynamics. This scheme is then generalizec
for the teleportation of the N-qubit field state.

II. QUANTUM TELEPORTATION OF AN ENTANGLED
STATE

In this section, we consider the teleportation of a two-
qubit entangled state of the radiation field in two separated
high-Q cavities A and A, to another pair of high-Q cavities
C, and C,. The entangled state of the radiation field is as-
sumed to be

!w(Al»A2)>= E Cplp.,lplvp'.’)' (l)
Py 5
I\V(Al.Az)> 4-bit classical information - ’W(AI;A2)>
Sending »| Receiving
/\/\/L, Station % Station W
b
B, C
By Ca
lw(B.C)>
,W(B:-C1)>
FIG. 1. Quantum teleportation of the two-qubit state

| W(A lA 2)) = zllrl .n,=()Cnl .ll2|” I '”2)' l l//(B 1 C} )) and | un RZC: ))
are two entangled states. Cavities B, and B, belong to the sending
station while cavities C, and C, belong to the recciving station. A
four-bit picce of classical information transmitted from the sending
station to the receiving station cnables the receiver to reconstruct
the original state.

©2000 The American Physical Socicty
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It may be pointed out that this scheme also corresponds to
the teleportation of entangled two-level atomic states be-
cause the atomic entanglement can be transferred to the two
cavities by passing them through the two cavities with 7
pulse. As usual, the teleportation of state (1) can be carried
out in three steps, as shown in Fig. 1.

In the first step, we consider the other two sets of cavities,

-B,, C, and B,, C,, prepared in entangled states: .

1
l‘ﬂ(BlCl))=E(IOBlvlcl>+|18|:0Cl>)’ )

W(Bzcz)):E(|052-1c2>+i132’0q))- ©)

I'ﬁ(AlAzBleClCz)):%, ; 6Cp,p2|P|>A,‘P2)A2
P1eP2T

PHYSICAL REVIEW A 62 0223(r,

We then have

1
|¢(B\B,C,Cy))= E[IOB,»OBZJC,JCZ)‘*‘IOB,JBZJC,’OC:)

+[15,.0,.0¢,.1¢,) +118,.15,.0¢,.0¢,)]-

4)

It is important to note here that for the teleportation of a
two-qubit quantum state we do not need to prepare an en-
tangled state of four qubits. Instead, we need two entangled
states of two qubits each. The combined state of the fields in
the cavities A, A,, By, B,, C,, and C, is therefore given
as

X (105,08, 1¢,.1¢c,) +105,,18,.1¢,.0¢c,) +115,.08,.0¢,.1¢c,) +|14,.15,.0¢,.0c,)). )

Next we define the basis states for the A|A,B B, system:

[¢), jp00(A1A2B\B)))=1 (104,04, 15, 15,) + € ™2|04 ,14,.15,,05,)

+e"™1|1,,04,08,.15,) + € ™1 77| 1y 14,05 .0p,)), 5

l¢;, .jz,o.l(AlAzBle)>=% (IOA,v0A2'13,~082>+ei7j210A,v|A2'|B,vlsz>

+e 1|1, ,04,,05,.0p,)+e ™2 14 14,.05,.15,)), : (7)

|4, jp10(A1A2BBy)) = 3 (IOAI'OszOBl'IBZ)+eiﬂj2|OAl'lszOBlloBz)

'*‘ei"j'llAl,OAz,lal.laz)+ei”(j'+j2)l Lo 1a,18,:08,)), (8)

ll/’j, gyt (A 1A2B\B,))=3% (lOAI’OAz»OBl’OBz)+eiﬂj2|0A|v1A2vOB|’le>

+ei”jll1A|s0A2y181,082>+ei”(jl+j2)l1A|»1A2v18|»182>)1 ] &)

where j;,j,=0,1. We therefore have 16 basis states. The combined state Iw(A,AzBlBZC,CZ))' can be rewritten as a linear
superposition of the basis states wal'fz'kl Ky (A 1A,BB,)) of the A|A,B B, system as follows:

|

| (A A;B,B,C,Ca)y= 2 3 W’jl.jz.o.o(f‘1A23132))(C00|0c,‘002>+Colei”jzwc,‘lcz)*C|oei"j'llc,voc'z)

J14d2=

+Cye' ™t e e N+, j,00(A1A2B1B2))(CwlOc nTe,) + Core'™2|0¢,0¢,)

+Ce' ™1 1cple) + Cue ™+ 1¢ 0c,))

¢, jya0(A1ALB 1B2))(Cool 1 ¢,:0¢,) + Core' ™21 cple)t Croe'™1|0¢,0¢,)

+Cpe! ™ N0c e ) 1Y,y (A1A2B1B2)) Cool Lepple,) + Coie'™|1¢,Oc,)

+Ce'™10¢ 1) + Cie'™1*92]0¢ 0c,)).

.q—g

022307-2

(10)



JANTUM TELEPORTATION OF AN ENTANGLED STATE

In the second step, we make a measurement of the
A|A,B B, system. A detection of the A|A,B B, system in
the state [¢;, ;. «, x,(A1A,BB,)) projects the field state in

the cavities C|C, into

I

G ,Z_O e TUPtirdC, | [(ky +p)mod2)c,
P27
X|(k2+/)2)mod2)cz. (11)

The field state in the cavities C;C, has thus been projected
to a state that has all the information about the amplitudes
Cp ooy

In the third and final step of the quantum teleportation, a
manipulation of the cavities C;C, needs to be done to bring
state (1) to from (i). In the fallowing sections we give the
details of these three steps.

A. Preparation of entangled states

In the first step, we prepare two pairs of cavities B,,C,
and B,,C, in entangled states (2) and (3). This can be done
by passing a two-level atom initially in the excited state
through the two resonant cavities. The interaction times of an
atom with two cavities are chosen to be such that we have a
712 pulse in the first cavity and a 7 pulse in the second
cavity [6]. Initially, the two cavities B, and C, are taken in a

vacuum and the two-level atom is taken in an excited state .

la). When the atom has undergone a 772 pulse in the first
cavity, the second cavity is still empty and the atom-field
system is in a state that corresponds to a linear superposition
with equal weights of |a) and |b) atomic states correlated to
zero and one photon, respectively, in cavity B as

I :
Il//(Blcl))=‘72‘(“’,15[)4‘Ia,031>)®|0c,>- (12)

If the atom is still in an excited state |a) after leaving cavity
B in its vacuum state, it will, with unit probability, be trans-
-ferred to |b) by the 7 pulse in cavity C, and leave a photon
in the second cavity. If it emits 2 photon in cavity B, and
exits it in level |b), it will be unaffected by its coupling with
the vacuum in cavity C; and will leave the second cavity
empty. Thus the atom always exits from second cavity C, in
state |b), while the field is left in the entangled state (2).
Similarly, we prepare another pair of cavities, B,C,, in en-
tangled state (3).

B. Measurement of |4 ;. x x,(A14,B,B,))

The second step of the teleportation is the measurement of

the Bell states |¥; j, «, x,(A1A2B,B3)) of the A A,B, B,
system. The subscripts j,, j,. k;, and &, have the values 0
and 1. Among these, k, and k, can be determined by the
number of photons inside the four cavities, while j, and j,
can be determined from the relative phase of the states. Thus
the state [¢;, j, &, x,(A1A2BB,)) can be determined in two

sets of measurements, the first determining k, and k, via the

e
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total number of photons inside the cavities, and the second
determining j, and j, via the relative phase. It is_clear
that the cavities in state |; ;, 00(A|A2BB,)) have two
photons, those in states |¢; j 01(A|A;B B;)) and
l'//jl,jz.l.o(AlAzBle)> have one or three photons, while in
state [¢; j,1.1(A1A;BB,)) they have zero, two, or four
photons.

There are a number of ways to determine the number of
photons inside the cavities. We propose the use of Ramsey
interferometry. In this scheme, we consider two-level atoms
initially prepared in ground state |b) that are off-resonant
with the radiation field inside the cavities. The cavities are
placed between two classical microwave fields (Ramsey
zones R and R,) driving the |a)—|b) transition. When an
atom passes from the first zone R, with a microwave field
tuned at frequency w,;, it is prepared in a coherent super-
position of states (Ja)+|b))/v2. This atom is then passed
through the two selected cavities with the same interaction
time ¢ in each cavity. During the passage through the cavi-
ties, a phase shift proportional to the photon number s in the
two cavities is introduced as a phase ¢f the state |b) [27]. The
resulting state of the atom then becomes

‘—/I_zf[|a)+e"“”|b)]. (13)

The atom is then passed through the second zone R, again
resonant with w,,. The interaction time and the coupling
parameters are chosen such that |a)—(|a)+|b))/V2 and
|b)—(la)=|b))/V2. The final atomic state is

e[ cos(s 012)|a) —i sin(s 6/2)|b)]. (14)

The complete atom-field state is entangled and rather com-
plicated. . We have therefore not reproduced it here. It is,
however, clear that a measurement of the atom in state |a) or
|b) would reduce the fields inside the cavities to states with
only an appropriate number of total photons in the two cavi-
ties.

The first atom is sent through the two cavities A; and B,
with the interaction time #= 7 in each cavity. It follows
from Eq. (13) that if the atom is found in the excited state |a),
the total number of photons in the two cavities is even, i.e.,
0, 2. This implies k; =1, k=0 or k; =1, k,=1. If the atom
is detected in state |b), then the total number of photons in
the two cavities is odd and k=0, k,=0 or k; =0, k,=1.1In
the next step we make a measurement in the cavities A, and
B, only with the same interaction time. A detection of an
atom in either the excited state |a) or the ground state |h)

* completely determines the values of k, and k> according to

the following sequence:

la)lay=1¢;, j,11(A1ALB,B2Y).
la)|b)=] ¥, jpa0(A 1A 2B B,)),

Ib)|a>=°|¢j| Jy01(A 1A1B,B,)),

022307-3
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|b)|b)= %, ,jz.O,O(A1A2BlBZ)>'

For the determination of phase factors j; and j, we make
measurements in the cavities A; and A, only after first
evacuating the cavities B, and B,. However, during the pro-
cess of ‘‘emptying’’ the cavities B, and B,, the relative
‘phase between the component states in the resulting state
‘l/IjIJZ'kI'kI(A‘A »BB,)) may change. There are a number
of ways to remove the photons from the cavities B and B, .

- Here we consider two two-level atoms initially in their
ground states |b). One of the atoms is sent through the cavity
B, and the other through cavity B,. After the passage, the
atomic internal states |a) and |b) are mixed by a classical
field such that [a)—(la)+|b))/VZ and |b)—(|a)
—|b))/vZ. A subsequent detection of these atoms in states
la) or |b) introduces phase factors. To see this clearly, we
take k =k, =0 for the sake of simplicity. Similar arguments
will, however, apply for other values of k, and k,. First we
consider the passage of atoms through cavny B, only. The
initial state is therefore

14, ,00(A1A2B,B,))® |atom)
bt %(!OA,,OszIB]rlgz)+eiﬂj"'|0,\l,],\zylgl.052>

+ei”j(|1A|¥OA2’OB('lBZ)

+enr<j.+fz)]1A‘,1A2,0,9l,052))®|b>- (15)

The removal of a photon from B followed by mixing of the
atomic levels by the classical field yields

[¢), j,00(A14,B,B,))®|atom)
=%[(|0Alv0A2,03‘.152)
+e'™2|0, 114,08, 052))® (]a)+]b))
+(€i'ﬂj||]A|’0A2’05-| ,JBZ>

3 . 1
el 11,05, 0500 = (l2)=[6). (16

The detection of the atom in level |a) gives
‘ l//II ._il.().()(A ]A23‘82)>

=3(104,0; 2-|n3>‘*‘C".T’j2|0A,JAzs()112>"‘6"'”1"| 14,084,185

+e""‘j'”3)|1,\,-1,\3»052))@40'5,)- (17)

whereas the detection of the atom in level [b) gives

>
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W/jl J200(A 1A,BB,))

=%(IOA'voszIBZ)+ei”j2|OA,v1A'szBZ> »
=i IA,‘0,«2‘132)~—e"ﬂf|+f2’( 14,:14,:08,)®[05 ).
(18)

By a similar procedure, the photon can be removed from the
cavity B, and the resulting cavity field state will have phase
factors according to the final outcome of the atomic state.
Here we summarize the final outcome depending upon the
sequence of atom states for the removal of photons from
cavity B, and cavity B,:

la)]a)— 3(

+€i7‘—(jl+jz)l 1,‘ s
|

04,.04,) +"’i”j3{0,1,‘

14,)®105,.05,),

]A:) +el”j'[ IA,-OA,)

la)|b)—3(104,.04,) ~ ' ™2|0, 14,0+ ™11 .0,,)

—e' M1, 1,.0)®[0g .03,),

1b)la)y—=3(104,,04,) +e ™20, ,1a )~ ™11, 04,)
—e!MIE Y, 14,0805 .05,).

’b)lb>“’%(IOA{-OAZ)“‘ei”jz|0A,‘1A2>_ei”j'l IA,-0A2>

+e! M1, 1, ))®[04,.05,). (19)
This completes the procedure of evacuating cavities 8, and
B,. The resulting state can have different but known phase
factors between the constituent states. The net effect is
equivalent to a transformation to a different basis. Next we
make measurements in the cavities A; and A, in order to
determine the phase factors j and j,. For s:mphcny s sake.
we assume that the first two atoms are detected in state |a).

-. We now remove photons from cavities 4, and A, by a
similar procedure, i.e., by sending two-level atoms in their
ground state |b) followed again by a classical field that mixes
the levels such that ]a)—e(la)+|b))l\/§ and [bY—(|a)
— o)V

[, .jz.O.()(A 1A2B | By))®|atom)

1
= — O, +(3lrr” 1 )
— (104, 14,
><[(I+ei”j')|a)'(’"f’i"j’)|”>].®IO/\»'O-'*I‘O":>'
; (20)

If the atom is detected in |a) then j{=0, and if atomg
detected in |b) then j, = 1. The resulting (.dvny field shuu is

1 S
l'/’jlt(),()(A 1A2BB,))= E(IO"Q) eyl f‘:>)

®]04,.08,.08,)- 2h
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L:—\
N
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Finally, we send the atom through the cavity A, and repeat
the same procedure. If the atom is found in state |a) then
J2=0, and if the atom is detected in |b) then j,=1. So by
making measurements only in cavities A, and A, by first
removing one photon from cavity A, and then removing one
photon from cavity A,, detection of the atom in diffsrent
states yields the different values of j, and j, as

a)la)la)la)—j =0, j2=0=|¢gox, x,(A1A2B\B,)),
la)|a)la)|b)—ji=0,

la)la)|b)la)—j =1,

J2= 1= Y01k, 4, (A1A2B ) B)),
J2=0=¢104,.4,(A1A2BBy)),

la)la)b)|b)—j =1, fz=1:lwl.l,k,.kz(AlAzBiBz)>-

If we have other sequences of detection of the first two
atoms, then by doing the same process detection of the atom
in different states gives the different values of j; and j, as
shown below: :

la)|b)]a)|a)—j, =0,

la)lb)|a)|b)—ji =0,

j2= l=$l ‘//O.I.k| -kz(A lAzBle))n
J2=0=|do0k, 1,(A1A2B1B))),

[a)B)b)a)—=ji=1, ja= 1= 14, ,(A1A2B1B3)),

la)[o)[D)|b)—j1=1, j2a=0=|¢1 04, ,(A1A2B1B>)),

[b)la)la)la)—j1=1, j2=0=|h 0k, +,(A1A2BB))),

|o)la)la)lb)—ji =1, j2=1=|¢114, 4, (A1A2BB))),

|6)a)|b)la)—j, =0, J2=0={Yo04, 1,(A1A:B1B2)),

D) a)|o)|o)—=j1 =0, ja=1={do,x, .k,(A142B1B2)),

[)o)|a)la)—j1 =1, ja=1=|t1x 4, (A1A2B1By)),

[B)|b)a)|b)—ji =1, j2=0=|¢ 0k, +,(A1A2B(B2)),’

1B)B)b)a)—j 1 =0, ja=1=|to1k, £, (A142B1B2)),

C1B)[B)bY|bY=j1=0, j2=0=2|d0k, k)(A1A2B1B2)).
We can summarize from the above equations that if the
order of detection of the first two atoms is the same as the
last two, then we have j,=0 and j,=0 and the state is
|0k, 4, (A 1A ,B,B>)). If the detection of atomic states is

the same for the first and third atom and detection of the

", fourth atom is reversed with respect to the second atom, then

¢ j,=0and j,=1 and the state is |, x, k,(A1A2B1B2)). If

the detection of the atomic states is the same for the second

and fourth atom and detection of the third atom is reversed
with respect to the first atom, then j,=1 and j,=0 and the
state is | ¢, 0k, k,(A1A2B By »)). If the order of detection of

‘atomic states for the third and fourth atom is reversed with

e 2
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respect to the first and second atom, respecuvely, then j,
=1 and j,=1 and the state is | ¢, 1k, &, (A1428B3)).

A determination of the entangled slate of the field inside
the cavities A, A,, By, and B,, say, in state
[, ., 4, k,(A1A2B,By)), projects the state of the field in
cavities C, and C, into the state |¢(C,C,)) as given by Eq.
(11). In the final step of the teleportation, we transform this
state into the original state (1).

C. Transformation

The transformation of state |¢(C,C,)) given by Eq. (11)
into that given by Eq. (1) involves two steps. One is the
removal of phases exp(i7j,) and exp(i7j,) and the other is an
appropriate transformation of photon numbers.

First we consider the transformation of phase only. For
the sake of simplicity, we take k; =0 and k,=0. We then
have

[#(CC2))=CulOc,.0c,) + Core™2[0¢ .1c,)
+Ce' il O )+ Cre! ™ 2 1 e e ).
(22)
(i) If j,=0 and j>=0, then the state |l/I(A A,)) is recov

ered.
(ii) If j,=0 and j,=1, then
[#(C1C2))=ClOc,0c,) + Care'™0c  1e )+ Cudl 1 ¢, Oc,)
+Cpele,le,)- (23)
An atom in a superposition state [|a)+|b)]/v2 is passed
through the cavity C, only in such a way that the ground
state |b) picks the phase exp(ipm) (p being the number of

photons inside the cavity C,) while the excited state |a) does
not pick any additional phase. We then have

1
[(C\Ca))= E(Coomc,voc) = CalO¢,.1c,)

+Ciollc,0c,)~ Culle, le,)la)

1
+ ;_Z"(Coomc,,oc,)“” ColOc¢,1¢,)
+Ciollc 0c,) + Cullc leNNb). (24)

If the atom is detected in |b) after the passage through cavity
C, then the state /(A A,)) is recovered. If the atom is
detected in state |@) then repeat the process until the atom is
detected in |b).

(iii) For j,=1 and j>=0,

[¢(C,C,))=CuwlO0c,0c,)+ CarlO¢ 1) + Cige' ™1 ¢,0c,)

+C1|@iﬁllcl~lcz)- (25)

022307-5



wIANZOOR IKRAM, SHI-YAO ZHU, AND M. SUHAIL ZUBAIRY

We carry out the same process again, but this time we pass
the atom through cavity C, only. With the detection of the
atom in state |b), we recover the required state,

(iv) For j,=1 and j,=1,

[4(C,C2))=Cool0¢,0c,) + Coe'"[0¢ . 1c,)

+Cioe' "1, 0c,)+ Cullele,). (26)

Again, the same procedure is repeated except that the atom
passes through-both cavities. As before, the detection of the
atom in state |b) will recover the required state; otherwise;
we repeat the process until it is detected in state |b).

Next we consider the transformation of photon numbers
in the cavities. As phase is removed by the method dis-
cussed above, we take j;=j,=0 for simplicity’s sake:

(i) For k;=0 and k,=0,

[(C\C1))=CoolOc,.0¢,) + CailO¢,.1¢,) + Crol 1 ¢,.0c,)

+Cplleple,), 27

and the original state is recovered and we do nothing further.
(i) For k,=0 and ky=1,

[(C1C2))=ColOc,.1c,) + Conl0c,.0c,) + Crol L ¢l c,)

+Cyll¢,0c,)- (28)

In order to recover the original state (1), we should inter-
change the state between zero and one photon in cavity C,.
For this purpose, we pass a two-level atom in its ground state
[b) through cavity C, with a 7 pulse followed by its passage
through a classical field again with a 7 pulse (la)—|b) and
|b)—|a)) and finally through an empty cavity C; such that
the atom in excited state [a) leaves the cavity in ground state
[b) while leaving one photon inside the cavity and the atom
in ground state |b) leaves the cavity in the ground state with
no photon inside the cavity. This leads to the field states in
the cavities C; and C; in the entangled state (1) and the
teleportation is complete. :
(iii) For ky=1 and k,=0,

|4(C1C2))=Cuol 1¢,.0¢,) + Cail L cplc,) + CrolOc, Oc,)
+Cul0¢,1c,)- oy (29)

, We carry out the same procedure as above with the only
difference being that the atom is passed through cavity C,.
(iv) For k;=1 and k,=1,

[ C1Ca))=Cullc, lc,)+ Coill ¢, 0c,)+ Cul0c, 1c,)

+Cpl0c, Oc,)- (30)

Here we carry out the above procedure independently for the
two cavities C; and C,.

s L
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2N-bit classical information

Sending Receiving
/\/\/\"* Station [T B Station (\/\/\f"
hoA LA, Aw> ¢ lwanAz A
#at
lw(B.Ci)> < /,
/ s
lwBa.Co>/ /

ly(Bn.Ch)>
FIG. 2. Quantum teleportation of the N-qubit
state [ (A A,5...Ay))= E,',l i wOCR, ... VR ).

|¢AB;C;)) are N entangled states. Cavities B; (i=1,2,...,N) be-
long to sender while cavities C; (i=1,2,...,N) are with the re-
ceiver. A 2N-bit piece of classical information transmitted from the
sending station to the receiving station enables the receiver to re-
construct the original state.

IIL. TELEPORTATION OF THE N-QUBIT FIELD STATE

After giving a scheme to teleport the two-qubit state, we
would like to generalize this scheme for the N-qubit state as
shown in Fig. 2. Let us consider a N-qubit entangled field
state in N high-Q cavities as

|
[W(A ANY= 2 Cuplnieny). B1)

§ivins ny=0

We want to teleport this entangled state in A; (i
=1,2,--,N) high-Q cavities to C; (i=1,2,...,N) high-Q
cavities.

In the first step of the teleportation of state (31), we need
N pairs of entangled cavities

. I
(B C)) = E(IO)BJ”C,-'*'II)BJO)C‘.)‘ (32)

where i=1,2,...,N. These N entangled pairs of cavities can
be prepared as mentioned earlier by passing two-level atoms
initially in the excited state through the two resonant cavities
and by setting a #/2 pulse and a 7 pulse, respectively, in the
two cavities. As before, cavities B; (i=1.2,...,N) are with
the sender and cavities C; (i=1,2,...,N) belong to re-
ceiver. We now define 2" basis states in cavities
AlAz...ANB(Bz...BN as

Vi, iy kg kAL - ANB - BN))

) explim(jip1tjawat +invn)]
- (

Xlpap2a, 1P a (1 ==k ymod2)y,

X|(1=py—ka)mod2)g, X~ X[(1=py—kyImod2),
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1 N
= 2 JL [e!"nenlp, )y

Pyoeees Pn=0 m=1 i

Xl(l_pm_km)mOd2>Bm]' (33)

The combined state in the cavities A|...AyB,...ByC,...Cy
in terms of basis states can be written as

A . AnB, SBRESEWD
1 1 |

= e 2

FrovordN=0 Kpyoiiky=0 pyrrepy=0

XCp oWy iy by ity (Ar o AxBy ... By))

x 1 eiwj,,,p,,,l(pm+km)m0d2>cm- (34)

m=1

We now make measurement of the 2%V basis states of the
A,...ANB,...By system. It has 2N parameters; N parameters
correspond to the phase, while the remaining N para-
meters correspond to the photon - numbers inside the
cavities:  Aj,...Ay,Ay.By,....By. - Thus the state
L), ...ig by k(A1 - AyBy...By)) can be determined in

two sets of measurements, the first determining &k ,k,,...,ky
via the total number of photons inside the cavities, and the
second determining j,,j,,...,jn via the relative phase. For
the determination of photon numbers we use Ramsey inter-
ferometry. We send an atom in ground state |b) through two
cavities A; and B, and two Ramsey zones R; and R, with
interaction time #= 7 in each cavity. The atomn is resonant
with the two Ramsey zones and off-resonant with the cavi-
ties. Detection of the atom in either the excited state |a) or
the ground state |b) makes the probable outcomes of
Ilpjl _____ Tk kN(AI ...ANB| "'BN)> to N/2 of total N val-

ues. We then send a second atom in the ground state through
A, and B, with the same interaction time, which reduces the
probable outcomes by half. Similarly, we continue the pro-
cedure and send the last atom through Ay and By. A detec-
tion of the atom in either the excited state |a) or the ground
state |b) completely determines the values of ky,k,....ky
according to the following outcomes. For example, k, is
equal to 1 if the outcome of the-nth atom is |a), and &, is
zero if the outcome of the nth atom is |b). For example, if the
outcome of each atom is |b), except the last outcome, i.e., |a),
then the Bell state is |, __j, 00...1(A1---AyB, ...By)).
For the determination of phase factors j;.j;,....jy W€
make a measurement in the cavities A;,A;,...,Ay only after
evacuating the cavities B{,B,,...,By. For this purpose we
follow the same procedure used earlier for the two-qubit
state. We send N two-level atoms initially in ground state |b)
one by one through the cavities B,B;,...,5y. After the
passage through the cavity, the atomic internal states |a) and
|b) are mixed by a classical field such that |a)—(|a)
+|b))1V2 and |b)—(Ja)—|b))/V2. A subsequent detection
of these atoms in state |a) or |b) introduces phase factors
yielding 2" possible outcomes of atomic states. Next we

B
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make measurements in A|,A,,...,Ay in order to determine
Ji+J2s--»jn. We remove one photon from A, by sending a
two-level atom in its ground state |b) followed again by a
classical field that mixes the levels such that |a)—(|a)
+|b))/v2 and |b)—(|a) —|b))/VZ. Detection of the atom in
|a) or |b) determines the value of j, . It is zero if the atom is
detected in |a) and one if the atom is detected in |b). We then
repeat the process with other cavities. Finally we send the
Nth atom in |b) from cavity A, after mixing and detection
of the atom in |a) or |b) determines j . For each combination
of the first step, while evacuating B,8,,...,By, we get 2V
combinations in” the second step. Finally, we have a total of
2%V different combinations. Each combination has 2N out-
comes of atomic states—N outcomes each for evacuation of
B, and A,. We compare the first N outcomes of any com-
bination among the total of 22" with the last N outcomes of
the same combination. When these are the same we get j
=0 -and when they are reversed with each other we have j
= 1. For example, if all the first N outcomes of a combination
among 22" combinations are similar to the last N outcomes
of the same combination then we have all j equal to 0. How-
ever, if any nth outcome of the first N outcomes is reversed
with respect to the nth outcome of the last N then that j,
= 1. If all the outcomes of the first N are reversed with all the
outcomes of the last N of that combination then we have all
Jj equal to 1. This completes the procedure of measuring the
Bell states |1//jl iy okp k(A1 AyB .. By)). A determi-
..... k(AL AxBy . By))
projects the state of the field in cavities C;,C,,..., Cy into
the entangled state |4/ C,...Cy)) as

I‘//(CICN)>= 2 Cpl ..... Py

% H ‘,i ”j,,,l’ml (/)’" - k”l)lnodz)(,'m'

m=1

: (35)

In the third and final step of the quantum telepc::.iiion, a
manipulation of the cavities C,,C,,...,Cy needs to be done
to bring state |¢(C,C,...Cy)) to form |(AA;...Ap)).
This transformation of state involves two steps. One is the
removal of phases and the other is the appropriate transfor-
mation of photon numbers.

First we consider the transformation of phase only. It de-
pends upon the value of j. If all j are 0, then we have to do
nothing and the original state is recovered. However, if any
j. among N values of j is 1 then it has an additional phase
with it. For the removal of this phase we send a two-level
atom in a coherent superposition of states |a) and {b) through
the cavity C, in such a way that ground state |b) picks the
phase. If the atom is detected in |b) then the original state is
recovered, otherwise we have to repeat the process until it is
detected in |b). If there are m values of j that are equal (0 |
out of N values of j then we pass m atoms in coherent super-
position of states |a) and |b) one by one from those m cavities
and detect the atoms in ground state |b). If all the j are 1 then
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we pass N atoms in (|a)+|b))/v2 from all N cavities and
detect atoms in ground state |b).

Next we consider the transformation of photon numbers
in the cavities. This transformation depends upon the values
of k. If all the k are O then we have to do nothing and the
original state is recovered. However, if any k, among N val-
ues of k is I, then we have to change 0 and 1 photon from
cavity C,. For this purpose we pass a two level-atom in its
ground state |b) through cavity C, with a 7 pulse followed
by its passage through a classical field again with a 7 pulse.
Finally the atom passes through an empty cavity C, such
that the atom in excited state |a) leaves the cavity in ground
state |b) while leaving one photon inside the cavity and the
atom in ground state |b) leaves the cavity in ground state
with no photon inside the cavity. This leads the field states in
the cavities C,C,,...,Cy in the entangled state (31) and the
teleportation is complete. If there are m values of k that are
equal to 1 out of N values then we repeat the same process as
above by sending m two-level atoms one by one in ground
state |[b) from each m cavity and proceed further as men-
tioned earlier until the completion of the process. If all the k
are | then we pass N atoms in the ground state from all N
cavities followed by a classical field that mixes |a) and |b) as
|a)—|b) and |b)—|a) and finally through N empty cavities.
The field state in the cavities C;,C,,...,Cy have thus been
projected to a state that has all the information about the
amplitudes Coy gy This completes the transformation

process and hence the teleportation of the N-qubit state.

IV. CONCLUSION

We have presented a scheme for the quantum teleporta-
tion of a two-qubit entangled state of the form (1) from a pair
of cavities at the sender’s end to another pair of cavities at
the receiver’s end. The scheme employs atomic interaction
with high-Q cavities. We need two cntangled states of two
particles each for the teleportation ‘of a two-particle en-
tangled state. Sending one particle of each entangled state to
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the sender and the other particle to the receiver is sufficient
to teleport the entangled state of two qubits. This scheme is
then generalized for the teleportation of the N-qubit en-
tangled state in N high-Q cavities of the form (31). For thix
purpose we need N entangled states of two qubits each.
Sending one particle of each entangled state to the sending
station and the other particle of that state to the receiving
station is enough for the teleportation process.

The proposed scheme of teleportation consists of three
steps. The first step involves preparation of quantum en-
tangled states of type (2) and (3) between two high-Q cavi-

- ties. The second and third steps involve optical Ramsey in-

terferometry and single-photon transfer. All these require
controlled interaction times between atoms and cavities, neg-
ligible cavity loss, and no spontaneous decay during the
whole teleportation process. Controlling the interaction time
in the cavities can easily be achieved by properly setting,
through Stark field adjustment, the times during which atom
is resonant with each cavity [6]. About the spontaneous de-
cay we propose the Rydberg atom in circular states with
principle quantum number =~50. They have a long radiative
lifetime (30 ms) and a very strong coupling to radiation [28].
A negligible cavity loss is also required during the whole
process of teleportation. Cavity lifetimes for high-Q cavities
should be long enough as all the interactions of atom with
cavities should be completed before the cavity dissipation.
High-quality factors of such cavities and control of atomic
beams during the whole teleportation process may pose limi-
tations on the suggested scheme.
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