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Abstract 
ti 

In twentieth century the quantum theory of physics has been a fascinating 
playground to study the nature of electromagnetic radiations and matter. In this subject, 
the forces on atom by light have received much theoretical and experimental attention 
during past many years, not only because of interest in the basic atom field interaction, 
but also for the measurement of an unknown state of eieciwiliaglictiC field which poses 
an interesting question in it. The measurement' of the cavity field had gained a very high 
attention because of the possibility of the quantum computers, quantum teleportation, 
quantum cryptography, dense coding and many more. 

A project of Pakistan Science Foundation entitled "Quantum State Measurement" 
is taken to keep our research in this area. There are many schemes presented for the 
quantum state measurement. One of the most widely used ways is the reconstruction of 
Wigner function. We worked in this area and presented new schemes for the 
reconstruction of Wigner function of the field from the recovered-photon statistics of the 
field. Photon statistics can be recovered in no of ways. In this report we present five 
different new schemes for the measurement of photon statistics of the field. These are 
based on Deflection of atomic beam from the cavity field in Raman-Nath regime, 
Electromagnatically induced transparency, Resonance florescence, Ramsey 
interferometry, Autler-Towns time dependent spectroscopy, and Deflection of atomic 
beam in Bragg's regime. 

In the atomic beam deflection in Raman-Nath regime the momentum distribution 
'Am 

	

	 of the atoms after their interaction during the passage through the quantized cavity field is 
used for its reconstruction. We displace the photon statistics of the cavity field and 
reconstruct the Wigner function of the Schrodinger-cat state. In the Electromagnatically 
induced transparency we use a three level atom, the upper two levels were driven by the 
quantized field. The absorption spectrum of the probe beam gives the information about 
the photon statistics while in Resonance Florescence, instead of three level atoms we use 
two level atoms driven by the field. If the driving field is.position dependent then we find 
the position of the atoms passing through the cavity in Sub wavelength domain. In 
Ramsey interferometry we proposed to measure the joint photon statistics in two cavities 
containing entangled field. The cavities are placed in between the two Ramsey fields and 
two level atoms pass through these cavities and two Ramsey zone. In this setup the atoms 
goes under a dispersive phase shift while their passage through the off resonant entangled 
cavities. By measuring the internal states of the atoms we can reconstruct the photon 
statistics and then the Wigner function. The Autler-Towns spectroscopy is the reverse of 
EIT where the upper two levels of a three level atoms are driven by the field. Instead of 
measuring absorption spectrum we measure the spontaneous emission spectrum. In 
another scheme of atomic beam deflection in Bragg regime we measure the momentum 
distribution of atoms after passing through the two cavities containing entangled field. 
The momentum states contain the information about.  the joint photon statistics. 

Apart from these schemes we also proposed another schemes for the 
reconstruction of Wigner function using tomography by phase sensitive amplification of 
the field. Three level atoms of two photon processes are passed through the cavity 
amplifying the field to be measured. The two cases are discussed here. One in which the 



phase of the atoms are controlled outside the cavity and the other in which the phase is 
controlled inside the cavity. The complete quadrature distribution is obtained by 
measuring the quadrature for the different phases. The inverse Radon transformation is 
then employed to reconstruct the original quantum state. 

Most of these schemes are based on the atom field interaction and the role of 
phase and intensity of the field. In one of our study we consider spontaneous emission in 
a four-level atomic system driven by three fields. It is shown that, by controlling the 
phase and the amplitude of the driving fields, a wide variety of spectral behavior can be 
obtained ranging from a very narrow single spectral line to six spectral lines of varying 
widths. 

We also present an exciting application of new emerging field of Quantum 
Informatics i.e., Quantum Teleportation. We consider the teleportation of entangled two-
particle and multiparticle states and present a scheme for the teleportation that may be 
suitable for both entangled atomic states or field states inside high Q cavities. 



Paper # 1 

Measurement of Wigner function via atomic beam deflection in 
Raman-Nath regime 

Introduction 

The concept of a quantum state has always played a key role in discussions 
treating the foundations of quantum theory. Each physical quantity can be represented by 
a Hermitian operator, which is called an 'observable'. A measurement of this observable 
leaves the system in an eigenstate of the operator. A single measurement performed on a 
quantum system reveals a certain aspect of its state, and it will not uncover the quantum 
state completely. However, if we know how to determine the whole set of potentialities, 
the quantum state can be recovered. It is a basic assumption of the quantum theory that an 
infinite ensemble of system contains all the information about the quantum system. The 
quantum state of the radiation field is described completely by the state vector for a pure 
state and by the density operator for a more general mixed state. Equivalent descriptions 
of the quantum state can be formulated in terms of the quasiprobability distributions such 
as P-representation, Q-representation or the Wigner distribution function. These 
distributions, which do not have all the properties of a classical probability distribution, 
allow the evaluation of various correlation functions of the field operators, using the 
methods of classical statistical mechanics. For example, the Wigner distribution function 
affords the evaluation of symmetrically ordered correlation functions of the creation and 
destruction operators of the field. In recent years, a large class of the states of the 
radiation field has been studied. Some of them such as a squeezed state or a Schrodinger-
cat state exhibit interesting features in their quantum statistical properties for example 
they may have oscillatory photon distributions. Several methods have been proposed to 
measure quantum state of light as well as quantum state of matter. One method that 
allows us to perform measurements on wave function is the so-called tomographic 
method. In this method, the distribution for the electric field quadrature amplitudes are 
measured via optical homodyne measurements and the Wigner distribution function of 
the radiation field is constructed from these measurements via Radon transformation. 
This method has been realized experimentally. The other methods, which allow us to 
determine the quantum state of an electromagnetic field in a cavity or quantum state of 
matter, are based on the fundamental interaction of atoms with the cavity field. These 
include methods based on dispersive atom-field coupling in a Ramsey method of 
separated oscillatory fields, atomic beam deflection and the conditional measurements on 
the atoms in a micromaser setup. A class of schemes for the measurement of the quantum 
state of the radiation field involves the measurement of the absorption and emission 
spectrum in a driven system. The atom deflection method uses momentum distribution of 
atoms in order to reveal the quantum state of the light inside the cavity. In this case, the 
atom serves as a-tool that probes a quantum state of radiation field. 

Freyberger and Herkommer proposed a scheme to measure the quantized cavity 
field. Their proposed scheme utilizes resonant two-level atoms. The atoms are prepared 
in coherent superposition of atomic states, before interacting with the cavity field, which 
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is to be measured. They put a narrow slit of width much smaller than the wavelength of 
the cavity field in front of standing wave (of the cavity field). Under this approximation, 
sin(kx) dependence can be replaced by linear kx dependence in thd interaction 
Hamiltonian. They have studied the momentum distribution of the atoms and found the 
photon statistics of -the cavity field by the recursion relation w_m=a/(w_m-1)*. The 
scheme works well for the case where the probability amplitudes of photon statistics 
never go to zero. On the other hand it has limitations that w_m cannot be found when the 
probability amplitude (w_m-1)* becomes equal to zero. Such is, for example, in the case 
of Schrodinger-cat state, which has an oscillatory photon statistics. Another scheiiie 
proposed by Schneider also takes into account the atomic deflection method for the 
reconstruction of the quantized cavity field. They make use of a strong coherent reference 
field traveling orthogonally with respect to the cavity mode. The strong coherent field 
plays the similar role as the lodal oscillator in the homodyne tomography. While their 
passage through the cavity, the atomic probe interacts for a short time with the cavity and 
the reference field. They measure the momentum distribution of the atoms for different 
phases of the classical field and reconstruct an s-parameterized quasiprobability 
distribution of the field. 

Contrary to Freyberger and Herkommer, the method we propose do not require 
the superposition of atomic states, rather than this we inject a coherent state inside the 
cavity which causes the displacement of the original photon statistics of the field. Our 
proposed scheme has advantage of using mixed state instead of pure state. Furthermore, 
the scheme probes a beam of two-level atoms in their ground state for the measurement 
of Wigner function of the cavity field. We observe that the momentum distribution of the 
atoms, after interacting with the cavity field, contains enough information for the 
reconstruction of photon statistics and hence the Wigner function of the cavity field. The 
cavity field is however coupled to a resonant classical oscillator for the measurement of 
Wigner function. The injection of coherent state causes a displacement of the initial state 
of the cavity field in phase space. The role of this coupling in the quantum state 
measurement has been discussed in. The Wigner function is reconstructed in 'a 
completely different way and the mathematical framework is more simpler. We derive 
expression for the Wigner function of the cavity field in terms of displaced photon 
statistics. We also discuss the role of the derived expression used to reconstruct the 
photon statistics of the cavity field. Both the resonant and off-resonant atom-field 
interaction is discussed. We recover the photon statistics of the Schrodinger-cat state and 
also reconstruct the Wigner function for the same. It is very interesting to note that in 
non-demolition interaction of the off-resonant case, the mathematics is much simpler. 

Wigner function of the radiation field 

In order to measure the Wigner function of the cavity field we assume that there is 
a probability p(m) of m photons inside the cavity. A classical oscillator is connected' to 
the cavity so that it injects a coherent state inside it. The injection of the coherent state 
causes the-displacement of the field. We recall the definition of the quasiprobability 
distribution, which belongs to a general class of phase-space distribution in the form of s 
parameters. By the order of operators we mean the normal order, antinormal order and 
symmetric order. The s=1,-1, or 0 for normal-, antinormal-, and symmetric-order, 



respectively. For s=0 one obtains the Wigner distribution function and for s=-1, and 1, Q-
representation and P-representation, respectively. The Wigner function of the cavity field 
can be found directly if the displaced photon statistics is known. In this paper, we first 
find out the photon statistics and then the Wigner characteristic function of the cavity 
field with the help of displaced photon statistics. 

Resonant atom-field interaction 

Vv' consider the same scheme as that of Freyberger and Herkommer with two 
modifications: (a) we inject two-level atoms in the standing wave cavity field in their 
ground state and (b) we displace the photon statistics of the cavity field by injecting a 
coherent state for the measurement of the Wigner function. The transition of the two-
level atoms is resonant with the single mode quantized cavity field. A narrow slit placed 
in front of the cavity allows the atoms to collimate on a small region of the cavity field. 
Further, we consider the interaction in Raman-Nath regime where the kinetic energy term 
in Hamiltonian can be neglected. The atoms are transmitted through the opening of the 
slit.. We approximate that the opening is very small as compared to the wave length of the 
cavity field and is centered around x=0. Due to this approximation we replace the usual 
sin(kx) dependence of the standing wave of cavity field by a linear kx dependence. We 
obtain the set of coupled differential equations for density matrix elements and solve 
using the method of first finding the eigen values and then using them for the solution of 
coupled differential equations. We have supposed that the photon statistics of the cavity 
field is p(m), and the atoms are injected in their ground state. This in turn makes the 
initial condition that the initial probabilities of all the density matrix elements other than 
the ground state are zero. 

The equations of motion of the density matrix elements are solved subject to 
initial conditions. In order to measure the momentum distribution of the atoms, for the 
proposed experiment, we take the Fourier transform from. position space to momentum 
space in normalized co-ordinates. The atomic states, the field states and the position 
states of the atoms are entangled at this stage. We are interested in the momentum 
distribution of the atoms and hence do not bother about the internal states of the atoms 
and the cavity field states. For the measurement of the momentum of atomic probe, we 
take the trace over the field states and the internal states of the atoms, which lead to the 
probability of the momentum distribution on the detection screen. As an example, while 
measuring photon statistics of the cavity field we take the normalized Gaussian 
distribution of the atoms at the slit. We take the example of the Schrodinger-cat state. We 
recover the photon statistics, which shows good agreement with the original one. We note 
that when the value of ""kappa" is increased, the peaks in the momentum distribution 
spectrum resolve. We recover the photon statistics of the cavity field with the help of 
resolved speed-um of the momentum distribution. For the reconstruction of Wigner 
function of the cavity field, we inject a coherent state inside the cavity, which displaces 
the original photon statistics of the field in phase space. This displaced photon statistics 
of the cavity field is recovered from the momentum distribution using the same method 
as discussed above. We reconstruct the Wigner function of the cavity field after finding 
the displaced photon statistics. The photon distribution of the Schrodinger-cat state after 
the injection of coherent state alpha is reconstructed. We take the contour plot of the 
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original Wigner function and reconstruct it. As we begin to increase the value of "kappa", 
the Wigner function becomes closer and closer to the original one. This behavior of the 
recovery of Wigner function is just like the same as the recovery of photon statistics. 

Off-resonant atom field interaction 

In this section we discuss the situation where the standing wave field, inside the 
cavity, encodes information in the center of mass momenta of the" off-resonant out going 
atoms in Raman-Nath regime. Again we suppose a quantized field in a cavity with a slit 
in front of it. A beam of two-level atoms haVing detuning "Delta" interacts with the 
cavity field. For the Raman-Nath regime, the transverse motion of the atoms during 
interaction is ignored which allows us to drop the kinetic energy term in the Hamiltonian. 
The issue involved in this section is essentially used for analyzing quantum non-
demolition measurement. For the sake of simplicity, we use the effective Hamiltonian in 
our calculations. In this case, the off-diagonal density matrix elements are absent. 
Furthermore, the equations of motion for density matrix elements of the excited and 
ground state atoms are independent of each other, thus we can formally integrate them to 
get the result. The supposition, that the atoms are in ground state and they are highly 
detuned with the cavity field leads us to conclude that they remain in ground state after 
the interaction with the cavity field. Following the same procedure as in the case of 
resonant atom-field interaction, we take the Fourier transform of the equation from 
position space to momentum space in normalized co-ordinates. While we propose to 
focus the atomic beam in the mid way between node and anti-node of the standing wave 
cavity field. We use the small opening of the slit as compared to the wavelength of the 
standing wave cavity field and choose the same initial condition as described in the 
resonant atom-field interaction. We get the momentum distribution of the atomic probe 
by taking the trace over the field and atomic states. 

In the present case, the peaks of the momentum distribution become resolved at 
very small value of "kappa" as compared to the, resonant case. We reconstruct the photon 
statistics of the Schrodinger-cat state. For the case of small "kappa" the peaks of the 
momentum distribution are not fully resolved which causes the partial recovery of the 
photon statistics. The situation is more favorable if we consider relatively higher value 
for "kappa", where the photon statistics is fully recovered. For the recovery of the Wigner 
function, we displace the photon statistics of the cavity field by injecting the coherent 
state from local classical oscillator. The displaced photon statistics is recovered from the 
momentum distribution, and is then used to reconstruct the Wigner distribution function 
of the cavity field. 

Results and Discussions 

We have recovered the photon statistics of the cavity field in case of Schrodinger-
cat state for both the resonant and off-resonant case. The graphs are taken for initial 
Gaussian distribution of the atoms at the slit. First, while considering the resonant atom-
field interaction, we note that when "kappa" is increased from 25 .to 45 gradually, the 
peaks in the momentum distribution spectrum begin to resolve. The opening of the slit 
has the reverse behavior on the momentum distribution spectrum, i.e., as we decrease the 



width of the slit, the more strength of the coupling is needed. We have used the limit that 
the slit has smaller width as compared to the wavelength of the cavity field. This allows 
us to replace the sin(kx) dependence by linear kx dependence. We use slit width 1/4 of 
the wavelength of the cavity field,-  which is a valid approximation under the existing 
limit. One can find the photon statistics of the cavity field with the help of the resolved 
spectrum of the momentum distribution. Adopting the same procedure we recover the 
photon statistics of the cavity field. For kappa=25 the peaks of the momentum 
distribution are not fully resolved which causes the partial recovery of the photon 
statistics of the cavity field. Although the positions of the peaks in recovered photon 
statistics match with the original but the heights remain different. The photon statistics is 
fully recovered when kappa=45 where the peaks of the momentum distribution are fully 
1,,„„1, 	Fr_r the 	nff_rpcnnant atom-field interaction, we need smaller values of 
"kappa" as compared to the resonant case and are enough to resolve the peaks in 
momentum distribution. The values used for the slit opening and the photon statistics of ' 
the cavity field are same as they were used in the case of resonant atom-field interaction, 
but here we need just kappa=10 for the best reconstruction of the photon statistics as 
discussed earlier in the previous section. 

In order to recover the Wigner function, we displace the photon statistics of the 
cavity field by injecting the coherent state by a local classical oscillator. We recover the 
Wigner function of the cavity field for resonant atom field interaction. It has recovered 
completely for kappa=45. However, for lower values of "kappa", the partial recovery of 
the Wigner function is observed. We also reconstruct the Wigner function of the cavity 
field for the off-resonant atom-field interaction. In the off-resonant case for "kappa"=10, 
we get the full recovery of the Wigner function. 

In conclusion we have proposed a scheme for the reconstruction of the photon 
statistics and hence for the Wigner function of the quantized cavity field for both the 
resonant and off-resonant atom-field interaction. We observe that in case of off-resonant 
atom field interaction a small value of "kappa" is sufficient to observe the resolved peak 
spectrum in momentum distribution of out going atoms: While on the other hand, we 
need relatively large value of "kappa" for the case of resonant atom-field interaction. The 
advantage of the presented scheme is that it works well for the case of mixed state also. 
The parameters chosen for the reconstruction of the photon statistics and the Wigner 
function are attainable in current state of art. 

Paper # 2 

Quantum state tomography using phase-sensitive amplification 

introduction 

Quantum state measurement has been a subject of great interest in recent years. 
As all the_knowable information of a quantum system are contained in the density matrix 
of the system, so the measurement of the density matrix elements will completely 
characterize the given quantum state. The Wigner function of a quantum state bears a one 
to one-correspondence with the density matrix of the state. Once the Wigner function of a 
quantum state is known then the corresponding density matrix elements of the state can 
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be worked out by employing the Wigner formula. On the measurement side, a balanced 
homodyne detector measures the linear combination of the creation and the annihilation 
operators of a quantized field. This linear combination of creation and annihilation, 
operators is also termed as the generalized or rotated quadrature of the field and the phase 
of this quadrature is given by the phase of the local oscillator in the balanced homodyne 
detection scheme. Vogel and Risken have shown that the quasiprobability distributions 
such as P, Q, and Wigner function bear a one to one correspondence with the generalized 
quadrature distribution function. From a set of measurements of the generalized 
quadrature amplitude in the balanced homodyne detection scheme, the quadrature 
distribution can be known and hence by tomographic imaging of this distribution, the P, 
Q, and the Wigner function can be obtained. Following the same scheme, Faridani and 
later Mlynek have experimentally measured the quantum state of the radiation field. 
Recently, some other methods have also been proposed for the measurement of quantum 
state of the radiation field. These include methods based on absorption and emission 
spectroscopy, the conditional measurements on the atoms in a micromaser, dispersive 
atom-field coupling in Ramsey method of separated oscillatory fields beside some others. 
In some recent studies, it is shown that the measured quadrature distribution becomes 
smoothed due to the finite detection efficiency. As a result, instead of Wigner function 
smoothed quasiprobabilities are constructed. 

In this paper, we propose a scheme for the measurement of quantum state of the 
radiation field using two-photon CEL. During the amplification through a phase-sensitive 
amplifier, there is no noise in the quadrature of interest and all the noise is fed into the 
conjugate quadrature. Therefore, the quantum information remains intact in one 
quadrature phase of the field and may be extracted out of it for the construction of 
quantum state of the field. In order to construct the Wigner function of the quantum state, 
we require a set of distribution functions for quadrature values. To obtain noise free 
amplification for different quadrature phases, we prepare the amplifier in different 
phases, accordingly. We have calculated 'the quadrature distributions for any arbitrary 
quantum state after its amplification through a phase sensitive amplifier. The distribution 
function of the noise free quadrature is then used to construct the Wigner function of the 
quantum state using quantum tomography. We apply this model to a Schrodinger-cat 
state and discuss the reconstruction of the corresponding Wigner function after its 
amplification through a two-photon CEL. Our proposed method is insensitive to detector 
efficiency which poses serious problems in observing the non-classical features 
associated with the quantum state. In a recent paper, we have shown that the quantum 
interferences associated with a Schrodinger-cat state can be observed using phase-
sensitive linear amplification. It may be pointed out that the phase-sensitive amplification 
of the Schrodinger-cat state and the resulting non-classical characteristics during the 
amplification process are discussed in the references. 

Measurement of the Quantum state using two-photon CEL 

We consider a two-photon phase sensitive linear amplifier, which consists of 
three-level atoms in cascade configuration. The atoms are initially prepared in a coherent 
superposition of upper most and lower most levels. We assume that such atoms are 
injected at a random injection rate inside the cavity where they interact with the field. It is.  



assumed that the cavity field is resonant with the atomic transitions. We write the master 
equation for the reduced density matrix as the following Fokker-Planck equation for the 
Wigner function. A solution of this equation yields the evolution of the Wigner function 
for any arbitrary initial quantum state. Here we look at the measurement of the quadrature 
distribution for the amplified quantum state. A complete distribution can be given by the 
quadrature distribution. Such distributions have recently been measured employing 
quantum optical tomography. The quadrature distribution for the amplified field can be 
obtained from the Wigner function. The solution indicates a one to one correspondence 
between the phase of the atomic coherence and the phase of the field quadrature. In order 
to reconstruct the Wigner function of the -initial quantum state, we need a set of 
distribution function for different values of theta varying from 0 to pi. 

The Wigner function can be constructed by amplifying the signal such that there 
is no noise in the desired quadrature and all the noise is fed into the conjugate quadrature. 
To obtain the noise free amplification, we prepare the atoms in a coherent superposition 
with a particular phase. The atoms are then injected inside the cavity where they amplify 
the initial quantum state. The noise free quadrature can be obtained by adjusting the 
phase of the local oscillator. To find the complete set of distributions, we prepare the 
amplifier for a set of values of atomic coherent superposition phases ranging from 0 to 
2pi and obtain noise free amplification for the desired quadratures. 

Once the quadrature distributions of the amplified signal are measured in 
balanced homodyne measurement, then the complete Wigner function is determined by 
carrying out the inverse Radon transformation familiar in tomographic imaging. For 
sufficiently large squeezing, we obtain the same original state for any arbitrary value of 
the gain parameter. This shows that the proposed scheme allows us to fully reconstruct 
the original quantum state after its amplification through a phase-sensitive linear 
amplifier. However, an appropriate rescaling of the measured distribution is required. As 
an example, we consider the Schrodinger-cat state. It is clear that for sufficiently large 
squeezing, and for any arbitrary value of the gain parameter, we obtain the Wigner 
function for the initial Schrodinger-cat state, which is quite interesting. 

Results and discussion 

The Wigner function shows two Gaussian hills at the location of two coherent 
states and oscillations on the conjugate axis due to the superposition of two coherent 
states. This is the well krlown behavior associated with the Schrodinger-cat state. It is 
shown that the well known oscillations due to the Schrodinger-cat state vanish when it is 
amplified through a phase insensitive amplifier. However, for r=1 and 2 the oscillations 
start appearing which is quite interesting. For strong enough squeezing, we almost fully 
recover the Wigner function corresponding to initial Schrodinger-cat state. These results 
confirm our assertion that amplifying the signal with the help of a phase-sensitive linear 
amplifier allows us to fully reconstruct the original quantum state. The Wigner function is 
reconstructed by taking the inverse Radon transform, once the quadrature distributions 
are measured after amplification through two-photon CEL. The quadrature distributions 
can be measured using balanced homodyne detection scheme. The parameters in the 
experiment should be adjusted such that field leakage through the end mirror does not 
occur during the amplification process. 
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In conclusion, we propose a scheme to measure the quantum state of the radiation 
field. The technique is based on amplifying the signal with the help of a two-photon CEL 
such that there is no noise in the quadrature of interest. Our scheme is insensitive to 
prOblems associated with the detector inefficiencies. In a recent paper Lenohardt and Paul 
have also proposed an interesting scheme based on antisqueezing the field with respect to 
the desired quadrature using degenerate optical parameter amplifier that also allows to 
overcome the problem of detector efficiency. 

Paper # 3 

Quantum Teleportation of an Entangled State 

Introduction 

The notions of coherent superposition and entanglement in quantum mechanics lie 
at the conceptual foundation of quantum mechanics as evident through fundamentals 
contributions like Bell's inequalities and Greenberger-Horne-Zeilinger (GHZ) equalities. 
These novel concepts are finding interesting and useful applications in the field of 
quantum computing and quantum information. One of the key problems in quantum 
communication is the transmission of a quantum state from one observer to another and 
to keep the received state exactly the same as that sent while no information carrier needs 
to move. This can be accomplished in two steps. First, the sender "disassembles" 
information of a quantum state into two parts, one of which is sent through a quantum 
channel run by the non-local correlation between two entangled quantum entities and the 
other is sent through a classical channel. Second, the receiver "reconstructs" the state on 
the basis of the information from both the quantum and classical channels. Because in 
this process a quantum state to be transmitted is destroyed in one place and later it is 
reconstructed in another place, this transmission is termed as teleportation of a quantum 
state. Bennett proposed a scheme for the teleportation of an unknown quantum state from 
one observer to another through duel Einstein-Podolsky-Rosen (EPR) and classical 
channels. Since this proposal, a number of experimentally feasible schemes have been 
suggested for the teleportation of two-level atomic states and field states for two-
dimensional states to N-dimensional states. Most of these schemes rely on methods based 
on cavity quantum electrodynamics in which two identical high-Q cavities are initially 
prepared in an entangled state. Quantum teleportation was experimentally verified by 
producing pairs of entangled photons by the process,  of parametric down conversion. 
Recently a scheme has been presented which exploits the cavity decay for teleportation of 
atomic state of an atom trapped in a leaky cavity. Beside these schemes of discrete 
variables much progress has also been made for quantum teleportation of states of 
dynamical variables with continuous spectra. The teleportation of a coherent state of the 
radiation field and, teleportation of superposition of amplitudes have also been reported. 
All these schemes are for the teleportation of single qubit states. In many potential 
applications of quantum computing, such as factorizing a very large number or searching 
an unordered quantum database, one needs the system of many qubits states. It is 
therefore an interesting question whether we can teleport a multi qubit state. In this paper, 



we present a scheme for the teleportation of two-particle entangled state from a pair of 
high Q cavities to another pair of high Q cavities using methods based on cavity quantum 
electrodynamics. This scheme is then generalized for the teleportation of N-qubits field 
state. 

Quantum teleportation of entangled state 

We consider the teleportation of a two qubits entangled state of the radiation field 
in two separated high Q cavities to another pair of high Q cavities. It may be pointed out 
that this scheme corresponds to the teleportation of entangled two-level atomic states also 
as the atomic entanglement can be transferred to the two cavities by passing them through 
the two cavities with pi pulse. The teleportation of state can be carried out in three steps. 

In the first step, we prepare two pairs of cavities in entangled states. Passing a 
two-level atom initially in the excited state through the two resonant cavities can do this. 
The interaction times of atom with two cavities are chosen such that we have a pi /2 pulse 
in the first cavity and a pi pulse in the second cavity. Initially the two cavities are taken in 
vacuum and two level atoms in excited state. When atom has undergone a pi/2 pulse in 
first cavity, the second cavity is still empty and the atom-field system is in a state which 
corresponds to a linear superpOsition with equal weights of atomic states correlated to 
zero and one photon, respectively. If atom is still in excited state after leaving first cavity, 
it will, with unit probability, be transferred to ground and leave a photon in second cavity. 
If it emits a photons in first cavity and-exit it in ground level, it will be unaffected by its 
coupling with the vacuum in second cavity in ground state. Thus atom always exits from 
second cavity in ground, while the field is left in the entangled state. Similarly we prepare 
another pair of cavities in entangled state. 

The second step of the teleportation is the measurement of Bell states. There are 
number of ways for the determination of number of photons inside the cavities. We 
propose to use Ramsey Interferometry. In this scheme we consider two-level,  atoms 
initially prepared in ground state and which are off resonant with the radiation field inside 
the cavities. The cavities are placed between two classical microwave fields. When atom 
passes from first zone with a microwave field tuned to atomic frequency, it is prepared in 
a coherent superposition of states. This atom is then passed through the two selected 
cavities with the same interaction time in each cavity. During the passage through the 
cavities, a.phase shift proportional to the photon numbers in the two cavities is introduced 
as a phase of the state b. The atom is then passed through the second zone again resonant. 
The interaction time and the coupling parameters are chosen such that a4(a+b)/sqrt{2} 
and b-->(a-b)/sqrt{2}. It is however clear that a measurement of the atom would reduce 
the fields inside the cavities to states with only appropriate number of total photons in the 
two cavities. The first atom is sent through the two cavities with interaction time pi in 
each cavity. It follows that if the atom is found in the excited state, the total number of 
photons in the two cavities is even. If the atom is detected in state b then the total number 
of photons in the two cavities is odd. In the next step we make measurement in the 
cavities only with same interaction time. We consider two two-level atoms initially in 
their ground states. One of the atoms is sent through the cavity B_{1} and the other 
through cavity B_{2}. After the passage, the atomic internal states a and b are mixed by a 
classical field. A subsequent detection of these atoms introduces phase factors. By a 



similar procedure the photon can be removed from the cavity and the resulting cavity 
field state will have phase faCtors according to the final outcome of the atomic state. The 
resulting state can have different but known phase factors between the constituent states. 
The net effect is equivalent to a transformation to a different basis. Next we make 
measurements in the cavities in order to determine the phase factors. We can summarize 
from above that if the order of detection of first two atom is the same as last two then we 
have j_111=0 and j_121=0. If the detection of atomic states are same for first and third 
atom and detection of fourth atom is reversed w.r.t. second atom then 1_111=0 and 
j_{2}=1. If the detection of atomic states are same for second and fourth atom and 
detection of third atom is reversed w.r.t. first atom then j_{1}=1 and j_{2}=0. If the 
order of detection of atomic states for third and fourth atom are reversed with respect to 
the first and second atom respectively, then j_{1}=1 and j_{2}=1. 

In the final step of the teleportation, we transform this state into the original state. 
Transformation involves two steps. One is the removal of phases and the other is an 
appropriate transformation of photon numbers. First we consider the transformation of 
phase only. An atom in a superposition state is passed through the cavity C_{2} only in 
such a way that the ground state picks the phase while the excited state does, not pick any 
additional phase. If the atom is detected in ground state after the passage through cavity 
C_{2} then the state (A_{1}A_{2}) is recovered, If atom is detected in state a then repeat 
the process until the atom is detected in b. 

In order to recover the original state, we should interchange the state between 0 
and.1 photon in cavity C_{2}. For this purpose, we pAs a two level atom in its ground 
state through cavity C_{2} with a pi pulse followed by its passage through a classical 
field again with a pi pulse (a-* b and b- a) and finally through an empty cavity C_{2} 
such that the atom in excited state leaves the cavity in ground state while leaving 1 
photon inside the cavity and the atom in ground state leaves .the cavity in the ground state 
with no photon inside the cavity. This leads to the field states in the cavities in entangled 
state and the teleportation is complete. 

Teleportation of n-qubit field state 

After giving a scheme to teleport 2-qubit state, we would like to generalize this 
scheme for N-qubits state. These N entangled pair of cavities can be prepared as 
mentioned earlier by passing two-level atoms initially in excited state through the two 
resonant cavities and by setting pi/2 pulse and pi pulse respectively in the two cavities. 
We now make measurement of the 2^{2N} basis states of the system. It has 2N 
parameters, N parameters correspond to phase, while the remaining N parameters 
correspond to the photon numbers inside the cavities. Thus the state can be determined in 
two sets of measurement, the first determining the set of the relative phases. For the 
determination of photon numbers we use Ramsey interferometry. Detection of atom 
either in the excited state or in the ground state makes the probable outcomes of total N 
values. We then send second atom in ground state with same interaction time, which 
reduces the probable outcomes to further half. Similarly we continue the procedure. A 
detection of atom either in the excited state or in the ground state completely determines 
the values of outcomes. 

10 



For the determination of phase factors we follow the same procedure as for 2-
qubit state earlier. We send N two-level atoms initially in ground state one by one 
through the cavities. After the passage through the cavity a classical field mixes the 
atomic internal states. A subsequent detection of these atoms introduces phase factors 
yielding possible outcomes of atomic states. Each combination has 2N outcomes of 
atomic states, N outcomes each for evacuation of B_{n} and A_{n}. If all the outcomes 
of first N are reversed with all the outcomes of last N of that combination then we have 
all j equal to 1. This completes the procedure of measuring the Bell states. 

First we consider the .transformation of phase only. It depends upon the value of j. 
If all j are 0, then we have to do nothing and original state is recovered. However if any 
j_{n} among N v2h1f.F. of i is 1 then it has additional phase with it. For the removal of this 
phase we send a two-level atom in a coherent superposition of states through the cavity in 
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	such a way that -grouud state picks the phase. It tlic ::+nm is detected in b then original 
state is recovered otherwise we have to repeat the process until it is detected in b. If there 
are m values of j that are equal to 1 out of N values of j then we pass m atoms in coherent 
superposition of states one by one from those m cavities and detect the atom in ground 
state. If all the j are 1 then we pass N atoms in (a + b)/sqrt{2} from all N cavities and 
detect atoms in ground state. 

Next we consider the transformation of photon numbers in the cavities. This 
transformation depends upon the values of k. If all the k are 0 then we have to do nothing 
and the original state is recovered. However if any k_{ n} among N values of k is 1, then 
we have to change 0 and 1 photon from cavity .C_{n}. For this purpose we pass a two 
level-atom in its ground state through cavity C_{n} with a pi pulse followed by its 
passage through classical field again with a pi pulse. Finally the atom passes through an 
empty cavity C_{n} such that the atom in excited state leaves the cavity in ground state 
while leaving 1 photon inside the cavity and the atom in ground state leaves the cavity in 
ground state with no photon inside the cavity. This leads the field states in the cavities in 
the entangled state and the teleportation is complete. If there are m values of k that are 
equal to 1 out of N values then we repeat the same process as above by sending m two-
level atoms one by one in ground state from each m cavity and proceed further as 
mentioned earlier till the completion of the process. If all the k are 1 then we pass N 
atoms in ground state from all N cavities followed by a classical field that mixes a,and b 
as a->b and b->a and finally through N empty cavities. This completes the 
transformation process and hence the teleportation of N -qubit state. 

Conclusions and results 

We have presented a scheme for the quantum teleportation of a 2-qubits entangled 
state from a pair of cavities at the sender's end to another pair of cavities at the receiver's 
end. The. scheme employs atomic interaction with high Q cavities. We need two 
•entangled states of two particle each for the teleportation of two particle entangled state. 
Sending one particle of each entangled state to sender and other particle to receiver is 
sufficient to teleport the entangled state Of two-qubits. This scheme is then generalized 
for the teleportation of N-qubits entangled state in N high Q cavities. For this purpose we 
need N entangled states of 2-qubits each. Sending one particle of each entangled state to 
sending station and other particle of that state to receiving station is enough for the 
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teleportation process. The proposed scheme of teleportation consists of three steps. The 
first step involves preparation of quantum entangled states between two high Q cavities. 
The second and third steps involve optical Ramsey interferometry and single photon • 
transfer. All these require controlled interaction times between atoms and cavities, 
negligible cavity loss and no spontaneous decay during the whole teleportation process. 
Controlling the interaction time in the cavities can easily be achieved by properly setting, 
through Stark field adjustment, the times during which atom is resonant with each. About 
the spontaneous decay we propose the Rydberg atom in circular states with principle 
quantum number approx 50. They have a long radiative life time (30 ms) and a very 
strong coupling to radiation. A negligible cavity loss is also required during the whole 

'process of teleportation. Cavity life times for high Q cavities should be long enough as all 
the interactions of atom with cavities should be completed before the cavity dissipation. 
High quality factors of such cavities and control of atomic beams during the whole 
teleportation process may pose limitations on the suggested scheme. 

Paper # 4 

Amplitude and Phase Control of Spontaneous Emission 

Introduction 

Spontaneous emission in atomic systems arises due to the interaction of atoms 
with the environmental modes. It is an interesting area of research to consider various 
means and systems to modify and control the spontaneous emission spectrum. We can 
control the fluorescence spectra by placing an atom in a frequency dependent reservoir, 
by placing the atoms in microwave cavities, or near the edge of photonic bands gaps. For 
atoms in free space, atomic coherence and quantum interference are the basic 
mechanisms for controlling the spontaneous emission. A control of spontaneous emission 
in atomic system via quantum interference and atomic coherence results in a number of 
novel phenomena such as lasing without inversion, electromagnetically induced 
transparency, correlated spontaneous emission laser, absorption cancellation and 
enhancement of the index of refraction with no absorption. The quenching of 
spontaneous emission in an open V-type atom was studied. Phase dependent effects in 
spontaneous emission spectra in a Lambda-type atom were presented. Recently 
Paspalakis and Knight proposed a phase control scheme in a four level atom driven by 
two lasers of the same frequencies, where the relative phase of the two laser was used to 
get partial cancellation, extreme linewidth narrowing and total cancellation in the 
spontaneous emission spectrum. In these calculations, parallel dipoles for the two 
transitions were assumed. However, orthogonal dipoles for the two transitions with small 
energy separation are easy to be found in nature. Therefore, it is worth to consider the 
spectral linewidth narrowing and other effects for the case of two orthogonal dipoles, by 
controlling one relative phase and keeping another relative phase constant. 

In this paper we present another scheme for four-level atom in which we can 
control the spontaneous emission by the amplitude and the phase of the driving fields. In 
our scheme, the quantum coherence is generated by a microwave field instead of the 
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sharing of the vacuum modes by the two transitions. The proposed scheme requires three 
driving fields but is more convenient in its experimental realization. We present 
analytical results for the spontaneous emission spectrum of a four-level atom. The upper 
two levels are closely spaced and are driven by microwave field. These two levels are 
coupled with a third level via two coherent fields and decay to the fourth level. All the 
interactions are assumed to be resonant. We study the various effects of the dynamical 
variables namely the amplitudes or, more precisely, the Rabi frequencies and carrier 
phases of the driven fields on the spontaneous emission spectrum. We predict six peaks 
spectral behavior, which.  are sensitive to these variables and their control results in 
extreme partial cancellation and extreme linewidth narrowing. The linewidth narrowing 
is seen 	in the 	 f_t.be two sets of dressed-states originating from slow decay 
rates. This is in agreement with the work_of Zhou and Swain where they found linewidth 
narrowing in one of the dressed-states nearby—  the 41—nching condition in the context of 
resonance fluorescence of a closed V-type atom. In this paper we assume that the 
transition frequency between the upper two levels is large as compared to their decay 
rates. This approximation allows us to neglect the quantum interference term in the 
equations of motion for the probability amplitudes. Our system is therefore independent 
of the alignment of the dipole moments. The trapping conditions is, however, not 
physically achievable in this approximation. 

Model 

We consider a system of four-level atom interacting with three driving fields. 
These fields resonantly couple the transitions al - b, a2 - b, and al - a2. The upper levels 
al and a2 decay to the lower level c via interactions with the vacuum field modes. We 
assume the coupling constants to be real for the sake of simplicity. If the matrix elements 
are orthogonal, there is no interference between the decay paths al - c, and a2 - c, and if 
the matrix elements are parallel, there is maximum interference. To analyze the 
spontaneous emission spectrum we assume the atom to be initially prepared in the state b. 

The spontaneous emission spectrum consists of two parts. Each part corresponds 
to three peaks associated with three dressed-states, which is composed. We neglected the 
interference terms between the two sets of dressed-states corresponding to the two bare-
states due to large separation between them. The spectrum therefore consists of six peaks. 
In any situations of interest, the interference terms occurring in the spectrum equation 
have negligible contributions. We examine the condition for trapping in this system. In 
order to have a non-vanishing steady-state population in the upper states of the system, 
the constant term of its characteristic equation is set to zero. 

Results and discussion 

Our system reduces to the usual form of Autler-Townes scheme where the 
spontaneous emission spectrum is split in doublet, when the atom is initially prepared in 
the state a2 and the Rabi frequencies and the decay rates are equal to zero. If the atom is 
initially prepared in the coherent superposition of the upper two level and the decay rates 
are non-zero there are four peaks in the spectrum originated from dynamical stark 
splitting of the upper two levels. The variation of the relative phase of the pump and 
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driving lasers result in a similar effect as the one reported recently. The spectrum 
contains two major parts due to the two bare upper states. Each part contains three terms• 
corresponding to three peaks associated with the three dressed-states in each. The 
equation therefore leads to a spectral behavior consisting of six peaks. The interference 
terms have negligible contributions. We consider the effects of the dynamical variables 
on the spontaneous emission spectrum. The variation of the phase associated with the 
microwave field influences the spontaneous emission spectrum efficiently. In the 
spectrum all the terms, except the central terms, are. The plot for these values shows an 
extremely suppressed central peak and enhanced side peaks. Furthermore, for the two 
bare-states, the height of one side peak is larger than the other. The ce 	e 	up 
to their maximum when phi is varied from 0 to pi-/2. In this case, the plot shows a 
suppressed central peak and equally enhanced side peaks for the one bare-state and vice 
versa for the second. When phi is further varied from pi /2 to pi, the new spectrum is just 
the mirror inversion. We note, that the peaks height varies with phi, however there is no 
appreciable change in the position of the spectral lines on the frequency axes. This 
behavior is in agreement with the coherently driven three-level Lambda-type atom of 
Martinez. The enhancement around pi/2, 3pi/2 and strong suppression around 0, pi of the 
central peaks is in accord with the work of Paspalakis and Knight reported recently where 
they used the relative phase of two lasers of the same frequencies to control the three 
peaks spontaneous emission spectrum in a four levels atom. 

The shape of spontaneous emission spectrum is strongly influenced by the 
variation of the Rabi frequencies. For instance, when the Rabi frequency Omega3, is 
reduced to 0.1 and phi =0, the contributions of the central terms are negligible. This is 
also evident from the plot that the central peaks are suppressed extremely and the side 
peaks are enhanced, moreover, the height of one side peak is slightly larger than the 
other. The central terms still remain negligible when phi is varied from 0 to pi /2. We find 
an extremely suppressed central peak but equally enhanced side peaks. When phi is 
further varied from pi /2 to pi, the new spectrum is just the mirror inversion and we get 
the mirror inversion if phi is varied to 3 pi/2. The decrease (increase) of the Rabi 
frequency Omega3, depopulates (populates) the central dressed-states of the two bare-
states and therefore, for the optimum value of the Rabi frequency, the spontaneous decay 
rates become negligible (maximum). 

It is worthwhile noting that the height of the central peaks increase and the side 
peaks decrease, with the decrease of the Rabi frequencies. In addition, the width of the 
central peaks gets extremely narrow for the low value of the Rabi frequencies whereas 
the side peaks are suppressed almost completely. The plot shows extremely suppressed 
side peaks and equally enhanced central peaks. Moreover, a remarkable spectral 
narrowing is also seen. By varying phi from 0 to pi, one of the central terms increases 
while the other decreases. This is also clear from the plot that the central peaks is 
enhanced with the height of a peak is larger than the other. When is further varied from 
pi/2 to pi, the new spectrum is just the mirror inversion and we get the mirror inversion if 
is varied to 3pi/2. We note that width of the lines emitting from the central dressed-states 
become extremely narrow when the Rabi frequencies are further reduced. This spectral 
narrowing is associated with the slow decay rates. The behavior agrees with Zhou and 
Swain in obtaining the linewidth narrowing of one of the dressed-states nearby the 
quenching condition in the context of resonance fluorescence of a closed V-type atom. 
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In summary, we have shown that by chosing appropriate parameters for the 
amplitude and the phase of the driving fields we can obtain a very wide variety of 
spectral behavior ranging from a very narrow spectral line to upto six spectral lines of 
varying widths. The present system is very easily experimentally realizable. 

Paper # 5 

Measurement of Photon Statistics via Electromagnetically 
Induced Transparency 

Introduction 

Electromagnetically induced transparency (EIT) was first observed by Harris. 
Since then this effect has been studied intensively both theoretically and experimentally. 
The theoretical studies assume the driving field to be classical. In this paper we study EIT 
by a quantized driving field inside a cavity and show that the absorption spectrum 
provides a direct means of measuring the photon statistics of the field. This method of 
measuring the photon statistics has the advantage that the photon statistics of the 
radiation field can be directly measured from the spectrum without resorting to 
cumbersome numerical manipulations of the experimental data. In addition, the proposed 
method is insensitive to the detector efficiency, which poses serious problems in 
observing non-classical characteristics of the field. The diagonal elements of the density 
operator with respect to the Fock state give the photon distribution function. The photon 
distribution for many fields may demonstrate novel non-classical features such as an 
oscillatory behavior in the case of single:mode squeezed vacuum state or the 
Schrodinger-cat state. It is a problem of recent interest to experimentally observe such 
non-classical features of the quantum state of the radiation field. Quantum state of the 
field is also determined by using optical homodyne tomography, which uses measured 
distributions of electric field quadrature amplitude to determine the Wigner function and 
hence the density matrix. From the knowledge of the density matrix, information about 
photon number and phase distributions is obtained. It has also been realized 
experimentally. Other schemes include methods based on dispersive atom-field coupling 
in a Ramsey method of separated oscillatory fields, atomic beam deflection, the 
conditional measurements on the atoms in a micromaser set-up, the Autler-Townes 
spectroscopy, resonance fluorescence, homodyning, unbalanced homodyning, photon 
chopping, and photon counting. 

In this paper, we propose a scheme to determine the photon statistics of the 
radiation field inside a cavity using a set up that is employed in the observation of EIT. In 
EIT, a three-level atomic system is considered. When a classical field drives the upper 
levels, the medium becomes transparent for a probe field resonant with the lower level 
transition. The transparency results from the combined Stark splitting and quantum 
interference of the dressed states, which are created by applying that additional 
electromagnetic field. The splitting of the level is proportional fo the associated Rabi 
frequency. Heights of the peaks of the absorption spectrum are independent of the Rabi 
frequency. Peaks are displaced from resonance.by an amount equal to Rabi frequency. If 

15 



the upper levels are being driven by a quantized field, the associated Rabi frequencies are 
distributed according to the photon distribution of the driving field. The absorption 
spectrum would thus mimic the photon distribution function of the driving field, which 
can therefore be recovered from the spectrum. The condition under which the photon 
distribution function of the driving field could be recovered is that the associated vacuum 
Rabi frequency should be larger than the atomic decay rates. Method to determine the 
photon statistics based on Autler-Townes spectroscopy is closely related to the one 
discussed in this paper. Another closely related scheme which has been experimentally 
realized for the determination of photon statistics is that of quantum Rabi oscillation. 
Rabi oscillations have been observed in vacuum and in small coherent fields. Its Fourier 
components show the discrete nature of field and the weighted Fourier components yield 
the photon number distribution in the field. 

Scheme 

We consider a system of three-level atoms initially in the ground state interacting 
with a quantized radiation field inside a cavity. The quantized cavity field drives the 
upper levels of the atom. We are interested in -finding the photon statistics of the field. 
This is done by probing the absorption spectrum. The atoms are prepared initially in the 
ground state. We show that the photon statistics of the radiation field inside the cavity can 
be determined by looking at the absorption spectrum. Under exact resonance both the real 
and imaginary parts of the. susceptibility vanish and the medium becomes transparent. 
This result is valid for arbitrary photon statistics of the driving field. An important and 
interesting fact is that the height of the peaks is independent of the excitation number n. 

Including the contributions from all the photon excitations in the photon 
distribution function and in the limit that the decay rate much less than the vacuum Rabi 
frequency of the driving field, we get the complete absorption spectrum. This absorption 
spectrum will mimic the photon distribution function. We next illustrate our results by 
considering the example of a Schrodinger-cat state, which is a coherent superposition of 
two coherent states. The photon distribution is thus an oscillatory function of n. These 
oscillations are manifestation of non-classical features of the quantum statistics. The 
photon distribution function is plotted against n. The corresponding absorption spectrum 
is plotted. The photon distribution function, recovered from the absorption spectrum in 
the same way as mentioned above. 

This scheme for the measurement of photon statistics through EIT is feasible 
within the presently accessible experimental limits. A small Fabry-Perot cavity, as 
reported by Hood where a single atom interacts with a cavity field, is appropriate for our 
scheme. Here g=60 times 2pi MHz, which is determined by the cavity geometry, and the 
atomic decay rate gamma=2.6 times 2pi MHz. These values are in accordance with the 
condition required by our scheme that g» gamma in order to resolve the peaks of the 
photon distribution clearly. An improvement would be required as far as the cavity 
interaction time is concerned, which is small in this case, in contrary to our requirement. 
In the microwave region, however, a large cavity interaction time has been observed in 
addition to the desired values of g and gamma. One discrepency, however, has not been 
encountered here; the values of g and gamma referred here are for the same two levels, 
which is not our case. 
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Results 

In this paper we haVe discussed a method based on 'absorption spectrmn to 
measure the photon statistics of the radiation field using electromagnetically induced 
transparency. This is a conceptually simple and direct method and involves no 
cumbersome numerical inversions like that used in some other schemes for the same 
purpose. Another advantage of this method is that it is insensitive to the detector 
efficiency, which can create serious problems in the observation of nonclassical features 
of the quantum states. 

Paper # 6 

Atom Localization via Resonance Fluorescence 

Introduction 

In recent years, several schemes have been considered for the localization of an 
atom using the standing optical light field. These schemes are based on the possibilities 
of measuring the phase shift of either the standing wave or the atomic dipole caused by 
the passage of the atom through the field. We can also correlate a spatially varying 
potential with an atomic resonance frequency and the position distribution of the atoms. 
In these methods the position information is available only after the atom has passed 
through the field. However for many potential applications, it is desirable to obtain 
position information of the atom during its passage through the standing wave. 

In this letter, we suggest a simple scheme to localize an atom inside the standing 
wave during its motion. This scheme utilizes the idea that the frequency of the 
spontaneously emitted photon carries the information about the position of the atom due 
to position-dependent Rabi frequency of the driving field. Therefore an atom is localized 
as soon as the spontaneously emitted photon is detected. This scheme presents a simple 
method for the localization of an atom using simple two-level atom interacting with the 
classical standing-wave field. In the presence of the driving field, dynamic Stark splitting 
of the atomic levels takes place and we get a three-peak resonance fluorescence spectrum. 
The splitting is directly proportional to the position dependent Rabi frequency. Our 
scheme exploits this fact and by measuring the frequency of the spontaneously emitted 
photon we can localize the atom during its motion through the standing wave field. It is 
worthwhile to mention that such a scheme, along with a similar scheme for atom 
localization based on Autler-Townes spectroscopy, affords a direct method to obtain 
information about the quantum state of the radiation field Without any major numerical 
computations. 

Scheme 

We consider a two-level atom with a center-of-mass wavefunction f(x). The atom 
is moving along z-axis and interacts with a resonant standing-wave light field of wave- 
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vector "kappa" aligned along the x direction. The velocity component of the atom along 
z-axis is considered large enough so that the motion in'this direction is treated classically. 
The driven atom radiates spontaneously and one of the modes of the scattered light 

	th, 

interacts with the detector atom, initially in its ground state. We assume that the scattered 
light is absorbed by the detector atom and is excited to an appropriate energy level. Our 
aim is to find the conditional position distribution of the atom. We assume that the center-
of-mass momentum of the atom A along x -axis does not change appreciably during its 
passage through the standing-wave. We can then neglect the kinetic energy term for the 
atom in the Raman-Nath approximation. Our scheme utilizes the fact that the frequency 
of the spontaneously emitted photon is directly related to the x. dependent Rabi frequency 
of the driving field. The spectrum of the spontaneously emitted photons or scattered light 
mimics the position probability of the center-of-mass motion of an atom. The filter 
function here is directly proportional to the excitation probability of the detector atom. 
The problem therefore reduces to finding the excitation probability for a single photon 
detection. The detector atom is interacting with the scattered light due to the decay of 
atom A. The probability of exciting the detector atom is found by calculating the 
expectation value of the projection operator. This excitation probability is therefore 
proportional to the power spectrum of the scattered.  light emitted from the atom. In the 
steady state the field emitted by the atom is statistically stationary. 

Results and discussions 

In the resonance fluorescence spectrum we have three peaks. In our scheme of 
localization of an atom we replace the Rabi frequency with the position-dependent Rabi 	
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frequency. The peaks are now position dependent. Atom now undergoes different Rabi 
oscillation at different position in a standing wave and we get maxima in the position 
distribution corresponding to these Rabi frequencies. We show a three-dimensional plot 
of the conditional position distribution for an initially broad wave packet, as a function of 
the normalized position and detuning. We note that for zero detuning there is a uniform 
position probability distribution over the wavelength domain of the standing wave. This 
is due to the fact that the atom exhibits a peak at Delta=0 for any value of Rabi 
frequency. The heights of the peaks for all values of position are the same and we 
therefore obtain a uniform position distribution. Thus the conditional position distribution 
provides no information about the atom localization for Delta=0. An increase in detuning 
corresponds to the localization of the atom at different positions inside the standing wave 
depending on the value of the position-dependent Rabi frequency. We obtain four 
maxima of same heights and widths. For small values of Delta, these maxima are located 
-near the nodes of the standing wave. However with the increased detuning, these peaks 
move towards the antinodes of the standing wave. There are no resonances for Delta >20 
and we obtain a flat position distribution over the wavelength domain. These results 
indicate a strong correlation between the detuning of the scattered light and the position 
of the atom. The measurement of a particular frequency corresponds to the localization of 
the atom in a suhwavelength doniain of the standing wave. 

A clearer picture of the dependence of localization scheme of atom on the 
position dependent Rabi frequency and detuning is demonstrated, where we show 2- _ 
dimensional plots of the conditional position distribution as a function of normalized 
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position for four different values of detuning. It is clear from these plots that the best 
resolved peak is obtained at Delta=G for which the signal to background ratio is 
maximum. We get a partial overlap of the adjacent peaks for the ranges 0< Delta <G and 
G<Delta<2G. This causes an enhancement of the background. The strength of these 
overlap and consequently the signal to background ratio, depends on 'how much the 
detuning deviates from the maximum value of G. However a complete overlap is 
observed for Delta=0 and 2G, which corresponds to the node and antinode, respectively. 

We also investigate the dependence of the width of the best resolved peaks, for 
which the signal to background ratio is maximum. It is noted that the width decreases 
with the increase in the amplitude G of the position dependent -Rabi frequency. Here we 
like to mention it again that the above power spectrum gives the conditional position 
distribution. The frequency of the spontaneously emitted photon is related to the detuning 
parameter. Hence the detection of the spontaneously emitted photon gives the immediate 
information 'about the position of the atom inside the optical field. Although the 
spontaneous emission process is isotropic in nature and would require using 4pi detectors 
in principle but for practical purposes, it is not necessary to measure every atom. It would 
be sufficient to detect only those atoms whose spontaneously emitted photon is certainly 
detected. 

Paper # 7 

Quantum state measurement of an entangled state via Ramsey 
interferometry 

Introduction 

A pure state of a pair of quaritum system is called entangled if they do not 
factorize, that is, if each separate system does not have a pure state of its own. In other 
words we can say that the two systems are correlated in an entangled state. A mixed state 
is entangled if, it cannot be represented as a mixture of factorizable pure states. During 
last many years a great deal of work has been devoted in order to highlight the 
significance of entanglement, particularly for mixed state of a bipartite system. Entangled 

. state of two or more particles, which are specially, • separated give rise to quantum 
phenomena that cannot be explained in classical terms that is why the quantum 
entanglement lies at the heart of the profound difference between quantum mechanics and 
classical physics. The previous work devoted to the measurement of a quantum system 
was concentrated on the single mode field in high-Q cavities. The quantum state of both 
the single-mode and multi-mode radiation field is completely described by the state 
vector for a pure state and by the density operator for a mixed state: Equivalent 
descriptions of the quantum state can be formulated in terms of the quasiprobability 
distributions such as P-representation, Q-representation, or Wigner distribution function. 
The reconstruction of full information of the quantum state of a given field is one of the 
most fundamental problems of the quantum slate measurement. Generally the quantum 
state in a single experiment cannot be measured precisely. However, one needs to 
perform different experiments on identically prepared objects to infer the quantum state 
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from the recorded statistical distributions. This idea was experimentally verified in a 
quantum optical system proposed by Vogel and Risken. In their scheme, homodyne 
detection method was employed to measure the quadrature distributions of equally 
prepared light pulses. The Wigner function was then reconstructed using the said 
quadrature distributions. The field distribution function can also be measured by using 
the other methods such as separated oscillatory field, atomic beam deflection,. the 
conditional measurement on atoms in a micromaser setup, and so on. 

We are interested in the reconstruction of the Wigner function of entangled state 
present in two separate cavities. Here we show entangled state of photons in spatially 
sepal died cavities can be measured using the techniques of cavity quantum 
electrodynamics. For this purpose we used the idea that quantum state of radiation field 
can also be measured by measuring depressive phase shift produced by the off resonant 
cavities on the interacting atoms. In Ramsey type setup the phase shift produced in the 
two level interacting atoms is directly proportional with the number of photons present in 
the cavity. We displace the photon statistics of the entangled field by injecting the same 
frequency coherent state. The displaced photon statistics is then used to reconstruct the 
Wigner function of cavities in a straightforward manner. 

Wigner Function of two mode entangled field state 

Here we show that how we have reconstructed the Wigner function of the two 
entangled cavities. We start with the definition of the Wigner function described in. In 
this reference Cahill and Glauber had suggested that the Wigner function of the single 
mode field could be found by displacing the photon statistics of the cavity field. The 
measurement of the displaced photon statistics of the cavity field then leads for the 
reconstruction of Wigner function. The displacement in the cavity field is obtained by 
injecting a coherent state alpha inside it. Cahill and Glauber had obtained a expression for 
the Wigner function in terms of displaced photon statistics of the cavity field. The 
Wigner function of the cavity field can be found directly if the displaced photon statistics 
is known. We extend the idea of Cahill and Glauber to multimode entangle systems. We 
realize that the definition of the Wigner function, which belongs to a general class of 
phase-space distribution, can be written for the case of two-mode field also. Here we 
assume that there is a joint probability of m photons in cavity mode A and n photons in 
cavity mode B. As we need to measure the two separate entangled cavities that is why we 
use two coherent sources for the displacement of the states inside the cavities. The two 
separate sources are connected to the cavities such that coherent states are injected 'to 
cavity A and cavity B, respectively. Thus the state of the field inside the cavities is 
displaced. Thus the Wigner function of the field can be found directly if the displaced 
photon statistics is known for all values of alpha and beta. 

Reconstruction of photon statistics of entangled state 

Let- us consider an entangled field inside two high-Q cavities. The presented 
scheme for the reconstruction of photon statistics of the entangled field state can be used 
for the reconstruction of full information in the form of Wigner function. We propose 
Ramsey type setup for the measurement of phdton statistics of the entangled state. A two 
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level atom interacts first with Ramsey zone, the cavity A, the cavity B and in the last with 
the second Ramsey zone. The atoms are resonant with the Ramsey zones and are off-
resonant with the cavity fields. The first Ramsey zone prepare the atoms in the 
superposition of their internal states while the two cavities A and B introduces a phase 
shift in the atomic states proportional to the total number of photons in the two cavities 
where as the second Ramsey zone again prepares the atoms in superposition of atomic 
states. At the output we measure the internal state of the atoms. 

For the reconstruction of Wigner function of entangled state we propose to 
displace each cavity mode by two independent microwave sources resonant to cavity 
mode A and B, respectively. The microwave sources inject the coherent states in cavity A 
and B, respectively. This injection of the coherent states inside the cavities displaces the 
state of the two separate entangled cavities. 

We take the two-level atoms that are initially prepared in the excited state by laser 
excitation before the interaction with the first Ramsey zone. The atoms in excited state 
are then passed through the first Ramsey zone. The interaction time of the atoms with the 
first Ramsey zone is adjusted such that they see a pi/2 pulse, this causes the preparation 
of the atoms in the superposition of their internal states. Here wf., choose the relative 
phase of the atom and field equal to pi/2. After interacting with the first Ramsey zone the 
atoms pass through the first cavity A that is off resonant with the atomic transition 
frequency. The atoms go under a phase shift during their passage through the cavity due 
to dispersive atom field coupling. Brune discusses this dispersive type of atom field 
coupling in detail. The phase shift produced in the atomic states after interacting with the 
field present in the off-resonant cavity A depends on the number of photons inside it. 
During this interaction the atoms go under a phase change only and there is no gain or 
loss of photons between the atom and the cavity. The emerging atoms then interact with 
the second cavity B and pick another phase proportional to the number of photons in this 
cavity. The atoms, in the last, interact with the second Ramsey zone. Here the atom again 
sees a pi/2 pulse and the relative phase of the atomic probe and the Remsey field is 3pi/2. 

The complete atom-field state is entangled and is complicated at this stage, it is 
however clear that a measurement of the atoms in state a or b reduces the entanglement of 
atoms with the field inside the cavities. At the output we measure the atoms in the exited 
or ground state with the help of field ionization detectors. The probability of the atoms to 
be detected in excited state can be found by taking the trace. Experimentally we get the 
probability in excited state by the detection of the atoms in state a over the ensemble of 
the detections on the identically prepared systems. Now at this stage we realize that the 
difference of the probabilities of the excited and ground state can be used to find the 
Wigner function of the entangled cavities. This gives us the method for finding the 
Wigner function of the entangled cavities. 

It is clear that the Wigner function of the entangled cavities can directly be found 
with the knowledge of the difference of the probabilities of the excited and ground states 
of the atoms. The final states are the periodic functions, which exhibit a characteristic 
pattern of fringes. The frequency of the patterns depends on the interaction time of the 
atoms with fields. We take the initial distribution of the photons in the two cavities. The 
first.atom passing through the cavity alters the photon statistics of the cavity field due to 
the back action of the measurement. The photon fiumber distribution is multiplied by a 
oscillatory function on n. 
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Conclusior. 

In conclusion we ha‘,e proposed a measurement tack ni lire for  0?taining the full 
information of entangled state in two separate cavities. The scheme is based upon the 
Ramsey type setup in the separated oscillatory fields method. The Wigner function is 
obtained by the displaced photon statistics 'of the cavity fields. The two separate 
electromagnetic oscillators obtain this displacement of the field modes in two separate 
cavities. • 

Paper # 8 

Quantum state measurement using phase-sensitive 
amplification in a driven three-level atomic system 

Introduction 

Quantum state measurement problem has attracted a lot of interest in recent years 
in the field of quantum optics. A number of schemes have been proposed to measure the 
non-classical states of the radiation field. These models incorporate the techniques based 
upon absorption and emission spectroscopy, dispersive atom-field coupling, the 
conditional measurement of the atom in a micromaser and others. As all the knowable 
information of the density matrix df a quantum system are contained in its Wigner 
function, so the knowledge of the Wigner function reveals the complete quantum state of 
the system. This scheme has been applied successfully to experimentally measure the 
vacuum and the squeezed states of the radiation field. 

However, the finite efficiency of the photo detectors poses a Series difficulty in 
the measurement of the quantum state. The quantum states are highly sensitive to the 
noise associated with the detectors inefficiencies. Inspite of some initial success, it is still 
beyond the scope of the current experiments to resolve the fine details of a quantum state 
being characteristic of non-classical behavior. For example, the oscillations in the photon 
number statistics for squeezed states have not been observed yet. In some recent studies it 
is shown that the measured probability distribution function becomes smoothed due to the 
finite detection efficiency. For example, instead of Wigner distribution function, 
smoothed quasiprobability distribution functions are reconstructed. In particular, for an 
overall 50 detector efficiency, Q function instead of Wigner function is reconstructed. An 
important question in this regard is how to overcome the finite efficiency of the detectors. 
In this paper, we present a model for the quantum state measurement using a two-photon 
amplification by three-level atoms in the cascade configuration, where coherence is 
induced between the top and the bottom levels by driving the atoms continuously with a 
strong external field. It was shown by Ansari, Banachloche and Zubairy that this system 
exhibits remarkable differences with the system where the atomic coherence is obtained 
before the interaction, so that there is no external driving field present during the 
amplification process. These two methods for generating the coherence are not.  
equivalent. In fact it was found that the system 'with the driving field never reduces to the 
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one studied in Ref. Instead it exhibits, as a function of the driving field, a range of 
behavior, from a phase-insensitive amplifier for low driving field to an ideal parametric 
amplifier at the other extreme. Here in this study, it is shown that this system could be 
used for the reconstruction of the, quantum state. In case of zero-detuning, for the large 
Rabi frequency, when noise in both the quadratures reduces to zero, the amplifier 
becomes identical to an ideal parametric amplifier and it successfully recovers the 
original quantum state. 

The Wigner function of the quantum state can be obtained by calculating the 
complete distribution function for the quadrature values. The maximum amplification 
with reduced noise for different quadrature phases is obtained by driving the system for 
different values of the phase of the classical field. We have calculated the distribution 
function for an arbitrary quantum state after its amplification through a phase sensitive 
linear amplifier in a driven three-level atomic system. The distribution function of the 
noise free quadrature is then used to reconstruct the quantum state of the field using 
inverse Radon transformation well known in quantum tomography. We apply this model 
to a Schrodinger-cat state and discuss its reconstruction after its amplification through a 
two-photon phase sensitive linear amplifier in the zero-detuning limit. This model 
enables us to overcome the problems arising due to the finite efficiency of the detectors 
in homodyne measurement scheme. In an earlier paper, we proposed a model for the 
quantum state measurement using two-photon CEL. 

Model for the Field-Density Matrix 

Our amplifier consists of three-level atoms in cascade configuration. The 
transitions a-b and b-c are dipole allowed whereas, the transition a-c is dipole forbidden. 
We assume that the transition a-c may be induced by employing a sufficiently strong 
resonant external driving field. We are considering the linear amplifier, therefore, we 
treat a-b and b-c transitions quantum mechanically up to the second order in the coupling 
constant and a-c transition semi-classically to all the orders. We assume that the atoms 
are initially pumped incoherently to the upper level. For simplicity, the decay rate is 
considered to be same for all the three levels. The coherence is produced by the classical 
driving field and is responsible for the phase-sensitivity in the system. In the remaining 
calculation, we assume that the two-photon resonance condition is applicable. Here we 
consider a two-photon linear amplifier, and calculate the gain contribution for the field 
quadratures. It is interesting to note that G depends upon the phase of the classical driving 
field and the phase of the generalized quadrature. In the forthcoming subsection, we 
discuss the reconstruction of the Wigner function in the zero-detuning limit. 

Reconstruction of the Wigner distribution function in the zero detuning limit 

The zero detuning condition requires that the level b lies exactly in between the 
upper level a and the ground state level c. The time evolution of the Wigner function of 
the field Can be evaluated by writing in terms of its Fokker-Planck equation for the 
Wigner distribution and by finding its time dependant solution. We find the evolution of 
the Wigner function for any arbitrary initial field. We are interested in the measurement 
of the quadrature distribution when the initial quantum state is amplified through a phase- 
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sensitive three level atomic system. In a balanced homodyne detection measurement 
scheme, the quadrature phase is characterized by the phase of the local oscillator. A 
complete distribution for the quadrature component is determined by scanning the field 
quadrature over a range of phase. Such distributions have recently been measured in 
quantum optical tomography. 

The parametric limit of the amplifier requires that psi=0. This condition requires 
that for the measurement of the field quadrature with maximum gain in each phase, the 
amplifier atoms have to be prepared in a specific phase correspondingly. The control over 
the amplifier phase is quite subtle in our model and it is exercised by introducing the 
variation in the phase of the driving field, from out side the cavity. This makes this model 
more realistic in its application for the quantum state measurement problem. In the 
limiting case the.  Rabi frequency of the classical driving field is much larger than the 
atomic levet width gamma, the expression for the gain' parameter G reduces. In this 
condition the noise in both the conjugate quadrature reduces to zero and the amplifier 
becomes identical to a degenerate parametric amplifier. Once the quadrature distribution 
of the amplified quantum state is measured in balanced homodyne measurement, then the 
corresponding Wigner function can be reconstructed by carrying out the inverse Radon 
transformation familiar in optical tomographic imaging. 

Reconstruction of the Wigner Function in Non-Zero Detuning Limit 

A more general case for two photon resonance condition is that of non-zero 
detuning. In this case, in order to separate out the noise and the gain terms, we impose 
the additional conditions. In the non-zero detuning the generalised quadrature distribution 
again emerges out the same Is except for the. change in the gain parameter G and the 
parameter xi. In this case G would always be greater than one for all the values of Omega 
and gamma. However, excess noise would be induced in both the conjugate quadratures 
and the quantum information carried away by the field quadrature would start fading 
away. Therefore, the original state would be recovered only upto a particular order of 
Delta / gamma. It is clear that for Omega / Gamma -› infty, and alpha t 	infty, we 
recover the Wigner function for the original Schrodinger cat state. In the forth coming 
section, we present the results of our numerical simulations. 

Results and discussion 

We present the results of our numerical simulation. The plots of Wigner function 
for xi 0=2, alpha t=1 and Omega / Gamma =1,15 and 30, respectively for zero detuning 
case. The results shows that for Omega / Gamma =1 (phase-insensitive amplifier) the 
well known oscilltory behaviour of the Wigner function vanishes. However, with the 
increase in Omega / Gamma the oscillations start appearing. For Omega / Gamma =30, 
the original Wigner function is almost fully recovered. We present the plots of Wigner 
function for xi 0=2, alpha t=5 and Omega / Gamma =1,15,30 and 60. The complete 
Wigner function is obtained for Omega / Gamma =60, which is quite interesting. We also 
present the plots of Wigner function for xi 0=2, alpha t=10 and Omega / Gamma =1,30, 
60 and 90. This shows that an increase in alpha t requires larger value of Omega / 
Gamma for complete reconstruction of the original quantum state. We show the plots of 
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Wigner function for alpha t=1 and Delta / Gamma =1,2,4 and 8. It is interesting to note 
that with the increase in detuning, the original quantum state is fully recovered. This 
scheme allows to overcome the problem of detector efficiency. 

In conclusion, it is shown that in a three level atomic system where the atomic 
coherence is established by driving the atoms continuously through a strong external 
classical field allow us to fully recover the Wigner function of the initial quantum state. 

Paper # 9 

Wigner function reconstruction using time-dependent physical 
spectrum 

Introduction 

Quantum objects cannot be seen as they are. This is due to the fact that quantum 
mechanics does not permit us to observe a single physical object completely. If one of the 
conjugate variables, for example, position of the physical object is predicted precisely the 
other conjugate variable. However, statistically, the physical properties of identically 
prepared objects are reproducible and we can obtain a state or wavefunction, which 
describes an ensemble of these physical objects. The measurement of such a quantum 
state is of great importance due to the fact that it brings into light various fundamental 
laws of nature, which can be described only by quantum mechanics principles. The state 
or wavefunctionof a physical system contains the complete information about the system 
and any future prediction can be inferred from the state or the wavefunction. The 
dynamics of a single mode light field is very much analogous to the dynamics of a 
quantum particle and that is why it gets considerable attraction amongst the researchers to 
measure the quantum state of the light. The other main reason of attraction in this area is 
due to the fact that several states of the radiation field exhibit non-classical features. 
These include the squeezed state and Schrodinger-cat state. The main question, however, 
is how the state of the quantum field can be measured? 

In the last decade, an extensive effort is being made to measure the quantum state 
of the radiation field by using various indirect methods. These include techniques based 
on Ramsey method of separated oscillatory fields, atomic beam deflection, the quantum 
state tomography, quantum state endoscopy, and several others. Quantum state 
representations are P-, Q-representation, or the Wigner distribution function. These 
quasiprobability, distributions have phase space, representation and therefore, can be used 
for the evaluation of symmetrically ordered correlation functions of the creation and 
annihilation operators of the field. Most importantly the non-classical features of 
squeezed state and Schrodinger-cat state can be manifested in the quasiprobability 
distributions such as P-representation and the Wigner distribution function. Arnow_ these 
various quasiprobability distributions the Wigner function is of particular interest. It has a 
one to one correspondence with the state or wavefunction and it can take on negative 
values. This quasiprobability distribution is therefore, closely related to the state or 
wavefunction and it represents the state of a quantum system in phase space. It is possible 
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to reconstruct the Wigner function from other probability distributions that can be 
measured experimentally for ari ensemble of identically prepared 'quantum systems. 

In this article we present a scheme for reconstruction of the Wigner function using 
the two-time correlation function of atomic dipole operators. The system uses the Autler-
Townes spectrum for a quantized radiation field in which the peaks are located at.  each 
number of photon. The associated Rabi frequencies are distributed according to the 
photon distribution function of the field and the photon distribution is recovered from the 
spontaneous emission spectrum in ,a straightforward manner. Here we consider the 
definition of the physical spectrum, which is proportional to the two-time correlation 
function, to calculate the spontaneous emission spectrum. 

Model 

In the present scheme we consider a system of three-level atoms with energy 
levels a, b and c passing through a quantized radiation field present inside the cavity. A 
source that injects a coherent state is connected to the cavity. The injected coherent state 
displaces the state of the cavity. The photon statistics of displaced state of the quantum 
field is therefore, represented by and the corresponding Wigner function. If we have the 
photon statistics for all values of alpha we can easily reconstruct the Wigner function. It 
is mentioned earlier that the photon statistics of the driving field can be found directly 
from the spontaneous emission spectrum. Therefore, our requirement now is to calculate 
the spontaneous emission spectrum of our three-level system. We consider that the 
atomic fransition between level a and c is resonant with the cavity field and .atom decay 
from the level a to b at the rate gamma. We also assume that the decay rates from the 
levels c and b are very small as compared to gamma and we may ignore these decays. 
The atom undergoes Rabi oscillation due to the interaction with the resonant cavity field 
and with a certain probability decays spontaneously to the energy level b. The time-
dependent physical spectrum of the scattered light at some suitably chosen point in the far 
field is obtained by taking the Fourier transform of the normally ordered correlation 
function of the field. 

Results and Discussion 

We calculate the expression for the time-dependent spontaneous emission 
spectrum. The complete spontaneous emission spectrum consists of contribution from all 
the photon excitations in the photon distribution function. To reconstruct the Wigner 
function we inject a coherent state inside the cavity as discussed above. The spontaneous 
emission spectrum now depends on the complex amplitude. The peaks in this spectrum 
are located at the integral values, so, the only meaningful values are the integer values. 
We can now reconstruct the Wigner function in a straightforward way. It may be noted 
that the spontaneous emission spectrum for a given value of the injected field gives the 
Wigner function at a point alpha in the complex plane and we have to obtain spontaneous 
emission spectra for different values to reconstruct the complete Wigner function. 

We plot the Wigner function of the Schrodinger-cat state. The oscillations at the 
center of the Wigner function in between the two Gaussian hills exhibits the interference 
structure due to the quantum superposition of both amplitudes. It is also clearly observed 
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that in certain regions of Wigner function becomes negative showing the non-classicality 
of the Schrodinger-cat state. We show the contour plot of the Schrodinger-cat state, 
which gives a beautiful picture of the contour lines in the Wigner function. We show the 
plots of the reconstructed Wigner function from the time-dependent spontaneous 
emission spectrum. The Figure shows a perfect recovery of the original Wigner function. 
The contour plot of the Wigner function shows the contour lines of.the distribution, this is 
in perfect agreement with the original plot. 

In summary, in this article we have suggested a scheme to reconstruct the 
quantum state of the radiation field inside the cavity. This scheme uses a time-dependent 
physical spectrum, which is more realistic approach as far as the spontaneous emission 
spectrum measurement is concerned. In present scheme we do not require the atoms to be 
in coherent superposition of states, which is very 'difficult to attain, as it is a highly 
unstable state. A major advantage of this scheme is that it is directly applicable for the 
measurement of a quantum state and again no cumbersome mathematical manipulations 
are required for this purpose. Another advantage of the proposed scheme is that it is 
strongly independent of the detector efficiency. As we have used the spectrum for the 
calculation of the quantum state, a few no-photon counts can easily be ignored. The 
'condition that has to be satisfied in this scheme is that the ratio of gamma / Omega, has to 
be very small in order to keep the peaks, resolved clearly. We have kept gamma / Omega 
=0.0. This small ratio of gamma and Omega has been achieved experimentally in the 
microwave and optical regions, respectively. The definition used for the spontaneous 
emission spectrum is more phenomenogical rather than the physical. The realistic 
approach for calculating the spontaneous emission spectrum is to use the two-time 
correlation function of the atomic dipole operators. 

. Paper # 10 

Measurement of entangled state via atomic beam deflection in 
Bragg's regime 

Introduction 

In twentieth century the quantum theory of physics has been a fascinating 
playground to study the nature of electromagnetic radiations and matter. In this subject, 
the forces on atom by light have received much theoretical and experimental attention 
during past many years, not only because of interest in the basic atom field interaction, 
but also for the measurement of an unknown state of electromagnetic field which poses 
an interesting question in it. The measurement of the cavity field had gained a very high 
attention because of the possibility of the quantum computers, quantum teleportation;  
quantum cryptography, dense coding and many more. Generally the quantum state in a 
single experiment cannot be measured precisely. However, one needs to perform 
different experiments on identically prepared objects to infer the quantum state from the 
recorded statistical distributions. This idea was experimentally verified in a quantum 
optical system proposed by Vogel and Risken. In their scheme, homodyne detection 
method was employed to measure the quadrature distributions of equally prepared light 
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pulses. The Wigner function was then reconstructed using the said quadrature 
distributions. The other methods for the measurement of cavity field are based on 
dispersive atom-field coupling in a Ramsey method of separated oscillatory fields, atomic 
beam deflection, and absorption and emission spectrum. An excellent review of quantum 
state reconstruction is given in. Most of this work was devoted to the measurement of a 
single mode field in high-Q cavities. 

The measuring process, in general, depletes the field if usual photon-counting 
technique is employed. For an ideal measurement thus we require that the system probe 
does not feed back noise into the variable that are being measured. This type of 
measurements is referred as quantum non-demolition measurements. The schemes of 
quantum non-demolition measurement may be based on, dispersive atom-field coupling 
in Ramsey type setup, optical Kerr effect, or atomic scattering. Among these schemes the 
atomic scattering method provides a nice tool for the measurement of field photon 
statistics, as the momentum distribution of deflected atoms is a function of field photon 
number The atomic diffraction from the electromagnetic field may be divided into two 
regimes, one in which the recoil energy of the field is much grater then the Rabi 
frequency (the Bragg regime) and the other in which the recoil energy is much less then 
the Rabi frequency (Raman-Nath regime). The, theory of Bragg diffraction was given by 
Bernhardt and Shore and was reported in several experiments in which up to 8th order of • 
diffraction has been observed. All these experiments were done with the classical field in 
cavities, however the advancements in technology, have made it possible to realize the 
diffraction of atoms from quantized cavity field. This paper deals with the utilization of 
atomic scattering in Bragg regime for quantum non-demolition measurement of joint 
photon statistics of entangled state in two separate cavities. 

There are few schemes reported for the reconstruction of multi-mode field inside 
a cavity. A scheme for the reconstruction of entangled state in a cavity has been put 
forwarded by Kim and Agarwal. They used the idea that probability of atomic inversion 
after a two-level atom interacts with a cavity field is directly related to the Wigner 
characteristic function. Ikram and Zubairy proposed another scheme based on Autler-
Townes spectroscopy to reconstruct the two-mode entangled state in a high-Q cavity. The 
scheme by Davidovich uses Ramsey type setup to reconstruct the GHZ state in three 
particles. Having a well justified and mathematically tractable measure of entanglement 
is likely to be value in a number of areas of research including the study of decoherence 
in quantum computers and the evaluation of quantum cryptographic schemes. 

Here we are interested in the reconstruction of the Wigner function of entangled 
state present in two separate cavities. We show that the entangled field states in spatially 
separated cavities can be measured using the techniques of Bragg's diffraction of two-
level atoms from the entangled field. We study the deflection of atoms from far detuned 
high-Q cavities in first order Bragg regime and develop quantum non-demolition 
measurement scheme based on it. The method adopted here is the reduction of entangled 
state to a Fock state, and then reproduce the field state by repeated measurements. Our 
suggested scheme successfully reproduces the photon statistics of the entangled 
electromagnetic field in, two separate cavities. The photon statistics of the entangled field 
state does not give the full information of the field state; rather it gives the information 
only about the diagonal matrix elements. To get the information about the off-diagonal , 
matrix elements we propose to reconstruct the Wigner function of the entangled field 
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state to be measured. For this purpose we propose to displace the field state in two 
cavities by injecting coherent states to the cavities. The displaced photon statistics is then 
used to reconstruct the Wigner function of cavities in a straightforward manner. 

Energy-momentum conservation argument 

In optical Bragg scattering, the condition for constructive interference of atomic de 
Broglie waves requires that the angle of incidence to the standing wave plane must be the 
one of the "ti,  order scattering angles that satisfies Bragg relation. Similarly, the Bragg 
diffraction of a well-collimated atomic beam by the planes of standing wave 
electromagnetic field can be viewed as the deflection of the atomic de Broglie waves 
from standing *wave of the field. It is important to note that no deflection occurs if the 
angle of incidence does not correspond to one of the scattering orders. This results in 
momentum transfer only for discrete initial values of atomic momentum (i.e., the only 
process which can conserve both the energy and momentum is the scattering in which the 
incidence angle satisfies the Bragg's condition). The situation of atomic scattering is 
similar to the Bragg diffraction in X-ray scattering from, crystals, and dictates that by 
changing the longitudinal component of momentum we can change the order of Bragg 
scattering. It is also clear that the atom-field interaction in the cavity reverses the 
direction of motion (in longitudinal direction) of the atoms only. The magnitude of the 
momentum remains same before and after the interaction, thus the energy momentum is 
conserved in Bragg regime. 

Scheme for quantum nondemolition measurement of entangled field • 

We consider an a two mode entangled field state present in two separate cavities. 
The state vector of the entangled field contains the joint probability of having m_{A} 
photons in cavity A and m__{B} photons in cavity B. We present a simple scheme for the 
measurement of this type of entangled field states. A two-level atom interacts off-
resonantly with the standing wave fields in the cavities in cascade fashion. We take the 
atom having detunning between the atomic transition frequency and the frequency of the 
cavity mode. The atom first interacts with the field present in the cavity A, then it 
interacts on his way with the second cavity B. The probe in this scheme is the momentum 
states of the atoms in Bragg regime. In this regime, it is assumed, that the momentum 
component of the atoms along transverse direction is very large, so one can treat it 
classically. At the same time, the atoms have well-defined momentum states in the 
direction of wave propagation i.e., the longitudinal component of the atomic momentum 
is well defined, and we can treat it quantum mechanically. The atoms are prepared in the 
ground state g, (which ensure us the quantum non-demolition measurement) with initial 
momentum state in the direction of wave propagation. After interacting with two cavities 
the atoms are detected in either of the two momentum states with the velocity selective 
detectors placed after the cavity B. We suggest to keep the injection rate of the atoms 
very low so that there is only one atom interacting with the cavity mode at a time. In 
Hamiltonian we neglect the constant momentum components along the transverse 
direction as discussed earlier. We first specialize to the atom-field interaction in cavity A. 

29 



The conditions under which the proposed scheme acts as a quantum 
nondemolition measurement can be obtained by taking the case when the detuning of the 
atom-field is very large as compared to the recoil energy. Under this condition we can 
ignore the recoil energy term in comparison with the detunning term. Here it is clear that 
the above limit also prevents the atom in going to excited state, thus the decoherence 
effect by spontaneous emission is not present. ,In Bragg's regime the atom may either go 
undeflected or it may get deflected. The angle of the deflection depends upon the number 
of interactions with the cavity field. For depressive atom-field interaction, the number of 
interactions of the atom with the field remains even, i.e., the atom goes through complete 
cycles of consecutive excitations and de-excitations. This is because of the large 
detunning limit, therefore during interaction with the field, the atom undergoes through a 
complete Rabi oscillation. Due to this the atom emerges from the cavity in the same 
initial ground state conserving energy, and with a total momentum change of lhk in the 
direction of wave propagation, (i.e., for each complete cycle the momentum transferred to 
the atom is zero or 2hk). This condition under which the energy of the cavity do not 
change is at the heart of the quantum nondemolition measurement process. 

The difference between Bragg scattering and Naman-Nath scattering is that there 
is only one possible diffraction order in the former case, and in the lateral case diffraction 
in many orders is possible simultaneously. The reason for many possible diffraction 
orders is that in Raman-Nath scattering, the atomic deBrogli wave is very sharply focused 
which is contrary to Bragg scattering. Consequently, in Raman-Nath scattering the atom 
could scatter into many different orders still conserving energy and momentum and the 
diffraction pattern remains symmetric about initial atomic trajectory. The absorption and 
stimulated emission of photon pairs causes the change in the direction of momentum 
along the wave propagation in such a way that the magnitude and its kinetic energy 
remain unchanged. Hence the momentum vector lies on a circle of constant energy in 
momentum space.- Now it is clear that the probabilities of atomic momenta in first order 
Bragg diffraction oscillates only between the two probabilities and outside this range 
acquire very less contribution. We apply adiabatic approximation, which dictates that the 
slow varying amplitudes dominate the time evolution. Thus, we obtain a closed set of 
equations for probability amplitudes, which can be decupled by differentiating and 
putting the values from the respective equations. The final probability amplitudes of the 
atom-field interaction now act as initial conditions for the interaction of atom with the 
cavity B. Again the evolution of the system is similar as it was in the first cavity with 
only one change of the initial momentum states as the two momentum components are 
possible for the atoms after interaction with the cavity A. These two probability 
amplitudes clearly display oscillations of the momentum states where as all other 
probability amplitudes remain insignificant as demanded by the adiabatic approximation. 
Thus knowing the probabilities of the momentum states by the repeatedly measurement 
of the momentum of the diffracted atoms we can determine the state of the cavity field. 

As the probability of detecting the atoms in momentum state p_{0} or p_{-2} is 
the product of joint photon statistics and an oscillatory function, so the photon number 
distribution can be transformed after detecting the atom in any of the momentum state. 
The sinusoidally varying function shows that the argument of this function contains the 
information of the entangled field modes: The,  spacing of the fringes depends upon the 
number of photons present in the entangled cavities. The photon number for which the 
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fringe function is closest to zero, are efficiently decimated thus causing the reduction in 
the field photon statistics. The oscillatory nature of the probabilities for the momentum 
states p_101 and p_A-21 is due to the quantum interference process. 

If the process is repeated on the same field with an atomic beam having different 
velocities and the atoms are detected in any of the momentum state then photon number 
distribution is suppressed and finally we arrive at fixed photon numbers in two cavities. 
Let these numbers be r and s in cavity A and B, respectively. We repeat the same process 
until we get another get of photon number say r^{prime} and s^{prime} in two cavities. 
We continue the process until the field state in two cavities is finally projected on an 
intelisity pattern, even though no energy has exchanged between the atoms and the field. 
This is at the heart of quantum non-demolition measurement. 

This situation is completely analogous to the quantum non-demolition schemes 
discussed, where the field initially in a coherent state transforms to Fock state with the 
measuring sequence. In our case the information acquired by detecting a sequence of 
atoms also modifies the entangled field function step by step, until it eventually collapses 
into a Fock state. We show how the photon number distribution transformed to Fock state 
after detection of a sequence of atoms with momentum state p_{0} or p_{-2}. Such 
repeated measurements lead to the determination of the photon statistics of the cavity 
field. Note that in this scheme the spread in the vertical velocity of the atom does not 
require any control. On contrary, the dispersion in the atomic vertical velocity, which 
corresponds to the uncertainty in phase helps as it makes easy to determine the entangled 
state of the field. 

Wigner Function of two mode entangled field state 

The Wigner function of the field can be found directly if the displaced photon 
statistics is known for all values of alpha and beta. We have already seen that the photon 
statistics of the entangled field can be found by reducing the initial photon statistics to a 
Fock state and then repeating the experiment to a ensemble of the identical entangled 
cavities. In our scheme to get the Wigner function of the entangled state we propose to 
displace each mode by injecting coherent states alpha and beta into the cavity A and B, 
respectively. Experimentally coupling two resonant classical oscillators to the cavity 
modes A and B, respectively, carries out this oper,ation. The displaced photon statistics of 
the entangled field allows us to calculate the Wigner function of them. In addition the 
momentum states for each value of alpha and beta gives the two-mode Wigner function 
in a straightforward way, which shows that the two-mode Wigner function of entangled 
field state can be found by the displaced state of the entangled cavities for all values of 
alpha and beta. 

Result and Discussion 

We want to do quantum non-demolition measurement of the entangled field in 
two separate cavities. For this purpose we have used atomic Bragg diffraction. Moreover, 
we .take the large detuning between the entangled field frequency and the atomic 
transition frequency. This ensures that atom does not exit from the cavity in excited state 
and - there is no spontaneous emission that contributes a photon in arbitrary direction. This 
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was noted that the atom comes out of the entangled cavities without altering the photon 
number of the field with two momentum states. Thus in this process quantum non-
demolition is well maintained. The information of the field photon number can now be 
extracted from the momentum probability distribution of the deflected atoms. We have 
seen from our calculations that the momentum probability of the scattered atoms is a 
periodic function and the argument of the periodic function contains the field photon 
statistics. In order to find the entangled field state we have used the method of reducing it 
to a single Fock state and then to measure it. Interaction of each atom with the entangled 
field present in two separate cavities updates the cavities field statistics depending upon 
the interaction time. The photon statistics gets multiplied by oscillatory function, which 
has periodic maximas and minimas. The position of the minimas changes with the 
interaction time of atom with field. The interaction time of the atom can be controlled by 
controlling the transverse velocity of them. Each atom in different interaction time 
eliminates some photon numbers in the distribution, until after a few number of atoms 
only one photon number state is left, which then does not change. By repeating this 
simulation and counting the number of times each n is appearing, we reconstruct the 
original photon distribution. 
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Atom localization via resonance fluorescence 
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We propose a simple scheme of atom localization based on resonance fluorescence from a standing-wave 
field. The Rabi frequency is posifion dependent and therefore the spontaneously emitted photon carries the 
information of the atomic center-of-mass motion. This leads to atom localization even during the flight through 
the standing-wave field. 

PACS number(s): 32.50.+d 

)84). 

13, 337 
rouWer. 

Precision position measurement of atoms has a vast his-
tory of interest due to its involvement in many applications 
like laser cooling, Bose-Einstein condensation, and atom li-
thography. The experimental progress in using light forces to 
manipulate the motion of atoms [1] make it more desirable to 
get high resolution position measurement of atoms with op-
tical techniques. 

In recent years, several schemes have been'considered for 
the localization of an atom using the standing optical light 
field. For example. Storey et al. [2] and Marte and Zoller [3] 
proposed the idea of a virtual "optical slit.",In that scheme, 
the atom is localized by measuring the phase shift of the 
optical field in a cavity due to the spatiallarying atom- 
field coupling. The localization in position space based on 
the phase-shift measurement on the field is further investi- 
gated via homodyne detection [4,5] by using•the method of 
quantum trajectories [6]. A related technique:for the position 
measurement of the atom is used by Kunze et al. [7] in 
which the phase shift of the atomic dipole,;lather than the 
light field is used. Kien et al. further investigated this method 
and showed that a coherent cavity field :substantially .en- 
hances the resolution as compared to a clasSiCal field [8]. In 
a recent experiment, Kunze et al. [13] demonstrated how the 
entanglement between the atom's position and its internal 
state allows one to localize the atom without directly affect-
ing the particle's spatial wave function...The'y reported the 
possibility of producing narrow localization structures with 
widths below X/20. 

Other techniques such as atom imaging methods are pro-
posed by Thomas and co-workers 19-11].,These methods are 
based on resonance imaging, i.e., a spatially;  varying poten-
tial shifts the resonance frequency of an atomic transition. 
Therefore the resonance frequency is position dependent and 
posi:),1(istrit-...i.ion is t.;;;. 	!)), 
They achieved a spatial resolution of 1.7 p.m for the atomic 
position IliCiltillfCflieill by using the technique of atom imag-
ing in high-magnetic field gradients. Thomas et al. further 
demonstrated that a suhoptical wavelength localization can 
be achieved by using light-shift gradient fur atom imaging 
[12]. 

In this article we suggest a simple scheme to localize an 
atom inside the standing wave during its motion. This 
scheme utilizes the idea that the frequency of the spontane-
ously emitted photon carries the information about the posi- 

tion of the atom due to its dependence on the positio 
dependent Rabi frequency of the driving field. Therefore 
atom is localized as soon as the spontaneously emitted ph( 
ton is detected. This scheme presents a simple method for ti 
localization of an atom using a simple two-level atom inte 
acting with the classical standing-wave field. In the present 
of the driving field, dynamic Stark splitting of the atomi 
levels takes place and we get a three-peak resonance fluoret 
cence spectrum. The splitting is directly proportional to th 
position-dependent Rabi frequency. Our scheme exploits thi 
fact and by measuring the frequency of the spontaneousl 
emitted photon we can localize the atom during its motio 
through the standing field. It is worthwhile to mention thr 
such a scheme, along with a similar scheme for atom local 
ization based on Autler-Townes spectroscopy [14], affords 
direct method to obtain information about the quantum state 
of the radiation field without any major numerical computa 
tions [15,16]. 

We consider a two-level atom A with energy levels 1a; 
and 1b) and transition frequency Wab  that is described by 
center-of-mass wave function f(x). The atom is moving 
along the z axis and interacts with a resonant standing-wave 
light field of wave vector K =  Wab /c aligned along the x di-
rection as shown in Fig. 1. The velocity component of the 
atom along the z axis is considered large enough so that the 
motion in this direction is treated classically. The driven 
atom radiates spontaneously and one of the modes of the 
scattered light interacts with the detector atom B, initially in 
its ground state. The detector atom consists of the ground 
level 1/3) and a set of excited levels lak). We assume that the 
scattered light of wave vector Ico  is absorbed by the detector 
atom and is excited to an appropriate energy level lako). Our 
:!;:r. i-, to find the conditional position distrihution of the 
atom A, i.e., the conditional probability ';`.k- ;1 ; ku  

ing the atom A at position x at time t when the detector atom 
.3 is excited to the level I cr k ). 

We assume that the center-of-mass momentum of the 
atom .4 along x axis does not change appreciably during its 
passage through the standing wave. We can then neglect the 
kinetic energy term for the atom in the Raman-Nath approxi-
mation. The interaction Hamiltonian for the atom A, in the 
dipole and rotating-wave approximations, is therefore giver 
by 
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Atom 'B' 

— In) 

Scattered Light 

Detector 

FIG. 1. Two-level atom A moving along the z axis and interact-
ing with a resonant standing-wave light field of wave vector K 

= mob I C aligned along the x axis. The driven atom A radiates spon-
taneously in all directions. The detector atom B, consisting of. the 
ground level 1/3) and a set of excited levels lak), absorbs the emit-
ted photon in mode k. 

H(t)=11g(x)[ja)(14-Fib)(al]+h 	[gk(x)Ia) 

x(bje
-((vk-wadtb+ g(x)I b)(alei( Pk-uab)ibli, k 	I 

(1) 

where g(x)=G sin(Kx) is the position-dependent Rabi fre-
quency, the operators b k  and bit are the annihilation and 
creation operators for the photons in the reservoir modes 
with frequency vk= clkl, and gk(x) is the coupling constant 
between the atom and the vacuum mode k. The state vector 
for the complete atom-field system is 

1 111(0)= J dx.f(x)lx)E [Ca,oko:ilq ,p(x;t)la,Oko,ng ,$),;!( 

Cb.Ok,nq.s(X;t)lb,Oko,Ni,P).- _ 

Cb.oko.,,q.ako(x;t)1b,Oko,nq  ,a1,0)1, 	(2) 

where Co  „ s(x;t) is the position-dependent probability 

amplitude with the atom A being in the level ii) (i=a,b) 

with no spontaneously emitted photon present in the mode k0  

and n photons present in the mode q, while the detector atom 
remains in the ground level 1/3). Similarly C 

	

	a  (X;t) 
n‘o q• ko 

is the probability amplitude for the atom A to be in the level 
lb) after emitting one photon in the koth mode and having n 
photons in the mode q; the emitted photon is absorbed by the 
detector atom B exciting it to the state lako) with no photon 

left in the koth mode. 

Our scheme utilizes the fact that the frequency of the 
spontaneously emitted photon is directly related to the 
x-dependent Rati frequency of the driving field. We now sec 
how the spectrum of the spontaneously emitted photons or 
scattered light mimic the position probability of the center-
of-mass motion of an atom. The conditional probabilM 
W(x;t1ako) of finding the atom A at position x at time t when 

the detector atom excites to the level lako) is 

=E 1(xIon.0,,.„,.„0)12 , n q  

where 

Itfrb,oko,no ,a,0 =Ar ako knql(01,010141(t)) 

=ArJ dx f(x)Cb,oko.n,,a,,o(x;t)lx). (41 

Here Nis a normalization factor. Thus the conditional polo( 
tion probability is given by 

	

W(x; tlako) -=- W(x) = If(x)12P(a),x,t), 	151 

with a) =11t01/c and 

	

P(6.),x,r)=1Arl 2E Ich,o,c,„q .ako
(x;012 . 
	(6) 

Here P(co,x,t). is the filter function which is directly prop* 
tional to the excitation probability of the detector atom. Ttg 

problem therefore reduces to finding the excitation probabd• 
ity P(co,x,t) for a single photon detection. 

The detector atom is interacting with the scattered 
due to the decay of atom A. The interaction picture Hamd. 
tonian for the interaction between the detector atom Immo! 
at position vector r and the scattered field E-  (r,t), in dit 

rotating-wave approximation, is 

H d= —E [p a k  00" 
k

13E+  (r,t)el' E  

+P:kporipakE — (/rt)e —iwt]. 

For the detector atom initially in its ground state 10) and to 
field in some state I f), the state of the atom-field system d 
time t is given by 

14,(0)=u1(t)1P)If). 

We then have 

141(0)-11 —  f dt flid(t')1113)1f)• 
n o 

The probability of exciting the detector atom to level ,t 4  t 

found by calculating the expectation value of the proptigo 
operator lako)(akol, i.e., 

Wfx;da 
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P(6),x,r)=011(t)lakoXakoiT(r)). 	(10) 

The resulting expression for the excitation probability is 

(11) 
W(x) 

This excitation probability P(w,x,T) is therefore propor-
tional to the power spectrum of the scattered light [17] emit-
ted from the atom A. In the steady state (74>r - ') the field 
emitted by the atom is statistically stationary, i.e., the field 
correlation function (E-(r,t1 )E+ (r,t2)) depends only on 

the time difference T= 	t 2 . We then obtain 

P(cd,x,cc)= —Ref dr(E-  (r;t)E+(r;t+ r))e+'". 
1 

7T 	0 

(12) 

As the field operators E-(r,t), E+(r,t) are proportional to 
the atomic operators cr+(r), o'_(r), respectively, we obtain 

(E-  (r;t)E+  (r;t+ T))=10(r)(a+(r)cr_(t+  r)), (13) 

where 10(r) is a constant. The two-time correlation function 
of atomic dipole operator (cr+ (t)cr_(t+ -r)) can be calcu-
hied by using the quantum regression theorem. It follows on 
taking the Fourier transform of (cr+(r)(7_(1+ r)) that the 
rower spectrum of fluorescence light is [IR] 

P(w'x'cc)  

10(0 	4g2(x) 	47rr2  

47r r2+8g2(x) r2+8g2(x) 

(   
soo 

 

c +  

A 2 + (F/2)2 	(—A  + 

c_ 
(A—p.)2 +(3r/4)21' 

k)2 +(3r/4)2  

(14)  

where A = 	co, 	Az= var(x)—r 2/ 16, and 

3r { 8g2(x)—r21 40g2(x)—r2  
c- 

4 
± (A ± Az) 

4 /1  2 8g  2(x)  ± r 8g2(X)+ r2  
(15)  

The expression for P(w) simplifies considerably when the 
Rabi frequency is much larger than the decay rate of the 
410M i.e., g(x )> F. The resulting expression for the spec-
nim is 

	

/0(r) 	 31/4  
Pko,..1c,=)=   4- 

	

87r 	[A+ 2g(x)]2 +(3r/4)2  A2 +(r/2)2  

31/4 

[A — 2g(x)]2 +(3F/4)2  

FIG. 2. Conditional position probability distribution 1V(.r) as a 
function of normalized position xx(.0.-KX-'5.270, and detuning 
for g(x)>1. For A=0 there is a uniform position probability dis-
tribution over the wavelength domain of the standing wave. By an 
increase in A, maxima corresponding to atom localization at differ-
ent positions inside the standing wave (initially near the nodes of 
the standing wave) for four different values of g(x), are observed. 
These maxima move away from the nodes with increasing detuning. 
For A = 2G, four maxima merge into two and lie on the antinodes 
of the standing wave and for lAl>2G no resonances exist and a flat 
position distribution over the wavelength domain is obtained. 

This is the well-known three-peak Mollow spectrum, the 
only difference being the position dependence of the Rabi 
frequency. 

In the resonance fluorescence spectrum we have three 
peaks centered at A = 0 and A = -± 2g. In our scheme of lo- 
calization of an atom we replace the Rabi frequency g with 

the position-dependent Rabi frequency g(x) = G sin(Kr). The 
peaks are now x dependent and are located at A =0 and A 
= ±2G sin(Kx). The atom now undergoes a different Rabi 
oscillation at a different position in a standing wave and we 
get maxima in the position distribution corresponding to 
these Rabi frequencies. In Fig. 2 we show a three-
dimensional plot of the conditional position distribution 
W(x) for an initially broad wave packet as a function of the 

normalized position KX and detuning A. We note that for 
zero detuning there is a uniform position probability distri-
bution over the wavelength domain of the standing wave. 
This is due to the fact that the atom exhibits a peak at A 
=0 for any value of Rabi frequency, and hence for all values 

of xx. The heights of the peaks for all values of position are 
the same and we therefore obtain a uniform position distri-
bution. Thus the conditional position distribution provides no 
information about the atom localization for A — 0. An in-
crease in detuning corresponds to the localization of the atom 
at different positions inside the standing wave, depending on 
the value of the position-dependent Rabi frequency gtx I. We 
obtain four maxima of same heights and widths in the region 
0ir.):21r located at KA. = ± 	'tA/2G 	n7r In =ti. 

± 1) . For small values of A, these maxima are located near 
the nodes of the standing wave. However, with the increased 
detuning these peaks move towards the antinodes of the 

standing wave. For A ± 2G, four maxima merge into Rk 
(16)  
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0.0 

2.0 

W(x) 1 .0  

0.0 
0 

KX 

and lie on the antinodes of the standing wave. There are 
noresonances for 1.11>2G and we obtain a flat positiol dis-
tribution over the wavelength domain. 

These results indicate a strong correlation between the 
detuning of the scattered light and the position of the atom. 
The measurement of a particular frequency corresponds to 
the localization of the atom in a subwavelength domain of 
the standing wave. 

A clearer picture of the dependence of the localization 
scheme of an atom on the position-dependent Rabi frequency 
and detuning is demonstrated in Figs. 3(a)-3(d), where we 
show two-dimensional plots of the conditional position dis-
tribution W(x) as a function of normalized position KX 

( ranging from —it—+r) for four different values of detun-
ing. i.e.. A/F=5,10,15,20. The amplitude of the position-
dependent Rabi frequency is taken to be G/F = 10. It is clear 
from these plots that the best resolved peak is obtained at 
...1=G for which the signal-to-background ratio is maximum. 
We get a partial overlap of the adjacent peaks for the ranges 
O<IAI<G and G<1Aj<2G. This causes an enhancement 
of the background. The strength of these overlaps and, con-
sequently, the signal-to-background ratio depends on how 
much the detuning deviates from the maximum value of G. 
However, a complete overlap is observed for A=0 and 
±- 2G. which corresponds to the node and antinode, respec-
tively. 

We also investigate the dependence of the width of the 
best resolved peaks. for which the signal-to-background ratio 
is maximum. on the amplitude of the position-dependent 
Rahi frequency ,e(.v)=G sin(Kv) (Fig. 4). It is noted that the 
width decreases with the increase in the amplitude G of the 
position-dependent Rabi frequency. The figure shows that 
the decrease in the width of the peak is very sharp for the 
alues of G/1-  ranging from 2-20. Outside this limit the 

width decreases slowly to a certain minimum value and stays 
practically asymptotic for Gil-  > 100. This happens because, 
in this regime, the amplitude of the Rahi frequency is very 

PHYSICAL REVIEW A 61 06380o 

FIG. 3. Conditional position 
distribution W(x) with G/1'.--10 
for (a) An-  =5, (h) A/I'= 10, tci 
Ail.= IS, and (d) 
clearly shows the dependence of 

position information on the detun• 
ing A. The solid line corresponds 
to the conditional position distri-
bution W(.v) and the dotted line 
corresponds to the standing wave. 
Hence position information is 
to,ailable in the subwavelength 
domain of the standing-light field 

large and the effect of the spontaneous emission, i.e., the 
linewidth, is minimized. 

The spatial resolution in our scheme depends on the ratio 
of G/F and we must get a better spatial resolution for high 
Rabi frequency G as compared to the decay rate F. April 
from the periodicity of the standing wave which results low 
peaks in a conditional position distribution within a unit 
wavelength, a spatial resolution of X!60 can he achielcd 
for a ratio of G/F= 10. This is a reasonable approximation 
for the ratio G/F because recent experiments in the oria 
region on the realization of single atoms in the cavity QED 
reported a ratio of G/r of 8 [19] and in a more recent wixt 
it is enhanced to approximately 20 [20]. 

Here we mention again that the above power spectrum 
gives the .conditional position distribution. i.e., the position 
information is conditioned on the measurement of the frt. 
quency of the emitted light. The frequency w of the sponu 
neously emitted photon is related to the detuning parametrt 
A, as co = (i)(717— 	where A= ±2g(-r). Hence the detectias 
of the spontaneously emitted photon gives the immedis: 
information about the position of the atom inside the opo• 
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The plot shows a strong dependence of is on the amplitude • 
position-dependent Rahi frequency G. 
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calfield. Although the spontaneous-emission process is iso-
tropic in nature and would require the use of 47 detectors in 
principle, for practical purposes it is not necessary to mea-
sure every atom. 

One of us (M.S.Z.) would like to thank the Pakistan 
Atomic Energy Commission, Pakistan Science Foundation. 
KRL, and the Quaid-i-Azam University Research Fund for 
financial support. 
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Amplitude and phase control of spontaneous emission 
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We consider spontaneous emission in a four-level atomic system driven by three fields. It is shown that by 
controlling the phase and the amplitude of the driving fields a wide variety of spectral behavior can be 
obtained, ranging from a very narrow single spectral line to up to six spectral of varying widths. 

PACS number(s): 42.50.Gy, 32.80.Qk 

I. INTRODUCTION 

68. 

Spontaneous emission in atomic systems arises due to the 
'HO 	interaction of atoms with environmental modes. It is an in- 

t)-11. 	wresting area of research to consider various means and sys- 
1.17 	tems to modify and control the spontaneous emission spec- 

trum. We can control the fluorescence spectra by placing 

2115 	atoms in frequency-dependent reservoirs [1], in microwave 
cavities [2]. or near the edges of photonic band gaps [3]. For 
atoms in free space, atomic coherence and quantum interfer-
ence are the basic mechanisms for controlling the spontane-
ous emission. Control of spontaneous emission in atomic 
systems via quantum interference and atomic coherence re-
sults in a number of novel phenomena such as lasing without 
inversion [4], electromagnetically induced transparency [5], 
correlated spontaneous emission laser [6], absorption cancel-

lation [7]. and enhancement of the index of refraction with 
no absorption [8]. 

The quenching of spontaneous emission in an open 
V-type atom was studied in [9]. Phase-dependent effects in 
spontaneous emission spectra in a A-type atom were pre-

sented in Ref. [10] and for an atom near the edge of a pho-
tonic band gap in Refs. [11], [12]. Recently, Paspalakis and 
Knight proposed a phase control scheme in a four-level atom 
driven by two lasers of the same frequencies [13], where the 
relative phase of the two lasers was used to get partial can-
cellation, extreme linewidth narrowing, and total cancella-
tion in the spontaneous emission spectrum. In these calcula-
tions, parallel dipoles for the two transitions were assumed. 
However, orthogonal dipoles for two transitions with small 
energy separation are easily found in nature. Therefore, it is 

worth considering the spectral linewidth narrowing and other 
effects for the case of two orthogonal dipoles, by controlling 
one phase and keeping the other constant. 

In this paper we present another scheme for the four-level 
atom in which we can control the spontaneous emission by 

the amplitude and the phase of the driving fields. In our 
%acme, the quantum coherence is generated by a microwave 
field instead of the sharing of the vacuum modes by the two 
transitions. The proposed scheme requires three driving 
fields hut is more convenient in its experimental realization. 

We present analytical results for the spontaneous emis- 
sion spectrum of a four-level atom. The upper two levels are 
closely spaced and are driven by the microwave field. These 
two levels are coupled with a third level via two coherent 
fields and decay to the fourth level. All the interactions are 

assumed to be resonant. We study the various effects of the 

dynamical variables, namely, the amplitudes or, more pre-
cisely, the Rabi frequencies and carrier phases. of the driven 
fields on the spontaneous emission spectrum. We predict six-
peaks whose spectral behavior will be sensitive to these vari-
ables and for which their control will result in extreme par-
tial cancellation and extreme linewidth narrowing. The 
linewidth narrowing is seen in the central peaks of the two 

sets of dressed states originating from slow decay rates. This 
is in agreement with the work of Zhou and Swain reported in 
[18], where they found linewidth narrowing in one of the 
dressed states near the quenching condition in the context of 
resonance fluorescence of a closed V-type atom. In this paper 
we assume that the transition frequency between the upper 

two levels is large as compared to their decay rates f and 
F2 . This approximation allows us to neglect the quantum 

interference term proportional to NiTif2  in the equations of 
motion for the probability amplitudes. Our system is there-
fore independent of the alignment of the dipole moments .  
The trapping condition, however, is .not physically achiev-

able in this approximation. 
The organization of this paper is as follows. In Sec. II we 

present the atomic model. the basic equations of motion, and 
their solution for the spontaneous emission spectrum. In Sec. 
III we analyze our results and discuss the dynamical vari-
ables that have the most direct influence on the shape of the 
spontaneous emission spectrum. 

II. MODEL AND EQUATIONS 

We consider a system of a four-level atom (see Fig. I ) 

interacting with three driving fields. These fields resonantly 

couple the transitions la i)-;b), 	2 )-113) , and la i)-ja2 ) with 

Rabi frequencies fl i, f12 , and 123 , respectively. The upper 

levels la ! ) and la2) decay to the lower level 1c) via interac-
tions with the vacuum field modes. The interaction picture 

Hamiltonian in the dipole and rotating-wave approximation 

is given by 

14(t)=ii(S2l ict i)(b1 +1121(12)01+ ( 31a 1 )(a 2  

+tiE 

X(Clbk )+H.C., 	 I I I 
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where ri(j= 1,2) are the radiative decay rates from the up 
per two levels to the lower level, respectively, and p denotes 
the alignment of the matrix elements of the two dipole mu 
ments and is given by 

_ 	!Irk) • (a 21r1c)  

P 	ilric)11(a 21ric)l .  
(7) 

la2> 

ib> 

r, 
.4 2 (o= -iiI2B(t)-if4A1 (r)-.-A2(t) 

/7 	- A 2(t)e-iwig, 	 (5) 

coo= - i A 1 (0411  ci"),- 	- A2(t) g(k2)  ei( Pk-  w2di 
(6) 

M2( 5)= (0) II i f1'3}' +112(8+ w,--312  + i i-14) + A i i(), M 2(S)=B(0)I 52 1 52;  

)4(8+ -,-512:(2)  ) SIT + ill' w21+ A 2(0)1( 8 + n:  
i 

x(s+ 
2 

tECi-Lii-in,121, 

013811-2 

vr,r, 
P  2 A2(r)eiw12%  

(4) 
+ A2(0)1(5-0)12 3 + 11;q121. 
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FIG. 1. Level scheme of the model atom. The bold double arrow 
indicates the microwave field coupled with upper levels 'a t ) and 
1(1 2 ). The same upper two levels are coupled with lb) via two co.: 
herent fields and with lc) via common field modes, shown by solid 
double arrows and dashed single arrows, respectively. 

where bk  and bit, are the annihilation and creation operators 
for the reservoir modes with wave vector k and frequency 
v= clkl= c k , and 81,1.2)  are the coupling constants between 
the kth mode and the atomic dipoles between levels 

).1a 2) and the level lc). We assume the coupling con-
stants to be real for the sake of simplicity. Here talc w2e are 
the transition frequencies from levels la i ),1a2) to lc), respec-
tively. At any time t, the atom-field state vector can be writ-
ten as 

ItP(1)>=[A1(01a1)+A2(r)la2)+B(t)10M01) 

ck(010110, 	 (2) 

If the matrix elements are orthogonal, there is no interference 
between the decay paths la i )-Ic) and lag)-lc) and p =0. and 
if the matrix elements are parallel, there is maximum inter• 
ference and p = 1. We neglect the last terms in Eqs. (4) and 
(5), however, under the approximation con> r 1.2 [15]. 

Next we solve Eqs. (3)-(5) for the steady-state expression 
for the probability amplitude Ck(t-+00). On integrating lig 
(6) we obtain 

Ck(t--•00)= -id )Ai(s= -i(51 )-ig )A2(s= 
(8i 

where Ai(s) are the Laplace transforms of the probabilit) 
amplitudes A ,(t)(i = 1,2), i.e., 

Ai(s)=J Ai(t)e-sidt, 
0 

and Si = vk- coic  and 8_ 2= Vk-  co_ c In the following we use 
8= vk- talc+ w12/2. We then have Si  = 8- cu i2/2 and 
= 5+ co12/2. Using the approximation discussed above. tak. 
ing the Laplace transform of Eqs. (3)-(5), and using Cram. 
er's rule .to evaluate the transformed Ai (s),A2(s), we get 
the following expression for Ck(t-x): 

where 1{0}) denotes the vacuum of the electromagnetic field. 
Using Weisskopf-Wigner theory [14], the equations of 'no-
tion for the probability amplitudes are given by 

h(t)= -inrA i (t)-iflIA2(t), 	(3) 

A l m= -in,B(0- —2 A 1(t) - ifi 3A 2(t) 

I) 
 M ( 45) 	(2)  M 2(6)  

Ck(t-400)=gk N1(S) +gk  N2(8) 

(01 , 	r, 
mi(8)=B(01n,(cs- 

W12) ( - 0)12 	r2 

	

+A,(o)[( 3- T: eV- 	2  )-11121 21 

where 
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Up-
10les 

1110- 

0,12 	012 	i)( 	(012 
X3= 

(X1—X2)( 1.1
.1111 

„ 	 (°12 
1 11211n3le i '`-  In 1  

( 7i 

use 

tak 
ram- 

1 	11 

_111 12(8_ !E_F.il22)__If1212( 	012 4_ . r 

	

2 	2 	 2 	I  2 

-( 	w.-42 )41312-(flin2(13+ninZIT3K ), (13) 

	

s(  8)= ( 8+  6-4) 8+ 	+ 21 ) ( 8+ 2 2 	i  _
2.
2r ) 

r 	 1-
2
1) -1112 1 -(5+ 	+i t")-1,11,212(5+ + 

-(8+ -5-W H I 1/ 31 -1  - (nrn2n3 + iflii;')• (14) 

To analyze the spontaneous emission spectrum we as-
'time the atom to be initially prepared in the state lb) so that 
B(11)== I and A 1 ( 0 ) = A ,(0 ) = 0. The coupling constants g(k1)  
and g tk2' are chosen such that g1,1) =g(k2) = 1. Further, to ac-
count for the effect of the phase of the microwave field on 
the spontaneous emission spectrum, we replace 113  by 

	

11 31e''. We assume n, and S22  to be real, 	111 =1nd 
and 112 = 11121. We can then write a general expression of the 
probability amplitude for any values Of spectroscopic param-
eters as 

a i +i)C3 1 	a2+ 	a3 + if33  
C(1—x1= 	 

	

8-  ( Y 1 + qi) 	( Y2+ i‘2) 8-  (Y3+ i‘3) 

	

a4 +//34 	a5 + 0'5  

8-  ( 	i‘4) 8-  (Y5+ i 1.0 

C16 + 1136  

( Y6+ i ;6). 	
(15) 

 

Here the quantities a;  /3;  , yi  , and ‘i  (i = 1-6) depend on 
the spectroscopic parameters, chosen such that yi  and ‘i  are 
the real and imaginary parts of X i  for i= 1-3 and /2;  for i 
=4-6 that satisfy the cubic equations Ni (X)=0 and 
.V 2( )= 0. ai  and fii  are the real and imaginary parts of 
V,(i= I -6) that are given by 

	

= 	-Di Hail +1n2111131,  
(X.?1 /43 )/ 

2 

+Jo iix )• 

( X;  - x 	r, 	 (012 

	

x,- 	Di • 	1 9117-  + In2111-131,̀"-Inil 

+inilx2)• 

(/z5-k6)  I 	r,  
A4- 	n 	021 	+ In Illf13Ie 	lo 21 

+1n21A4). 

X5= 
(A6

2 
 /14) (i11111 -7 

F2 	 (0 12 
+Iniiin3le i‘C +11121 — D 

+1n21/15). 

A 6 = D  iln2,  
(114-P0( 	

nIIIS2 i1c '' +111,1 
to 12  

+1n21/16). 

with 

D i  = 	X 2 -X31+ X!,(X.3 -X 1 )+X3(X i -X2 ),' 

D2= itti( /Is 	± /4( 16-  /14) ± /4(114 /45) 

The spontaneous emission spectrum 5(8) is proportional 
to ICk(t-400)12. Thus, apart from a proportionality constant. 
the spontaneous emission spectrum is given by 

+i131 	a-, + 	a;  4 03  - 
S(8)= r i  I 	. 	+ 	. 	+ 	 

1 6-(Y1+ 1 4-1) 	8-(Y2+ 1;2) 	6-(y3+43) 

+F a4+04  a5+
if35 2  

( Y4+ i‘-i) 	8-  (Y5+ i(5) 

a6+ ir36  

+ 8-  ( Y6+ i‘6) 

The spontaneous emission spectrum given in Eq. (16) con-
sists of two parts. Each part corresponds to three peaks as-
sociated with the three dressed states of which it is com-
posed. In Eq. (16), we neglected the interference terms 
between the two sets of dressed states corresponding to the 
two bare states due to the large separation between them. 
The spectrum therefore consists in general of six peaks lo- 
cated at 8= 	(i= 1-6). In many situations of interest. the 
interference terms occurring in the spectrum equation ha,  e 
negligible contributions: thus the heights of the peaks located 
at 8= yi  are given by ( cr:+0)/;,2, for i= 1-6. 

We examine the condition for trapping in this 	stem. In 
order to have a nonvanishing steady-state population in the 
upper states of the system, the constant term of its ‘..liaraocr-
istic equation is set to zero. The resulting condition for popu-
lation trapping is 

2 
(16) 

013811.3 
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FIG. 2. The spontaneous emission spectra S(8) (in units of 
1' 	for 1/, .a 2 .1u3 i= r. 	(a) 0, (b) 7i/2, (c) it, (d) 37r/2. 

r- 	r 
2loilln211c231cos(co+yni12-2-:+ In212T) = 0. 

(17) 

In the last equation, the real part can be zero if tp2., Tr/2, 
while the vanishing of the imaginary part requires negative 
decay rates, which is not physically allowed. There is there-
fore no trapping state in  our system. It may he pointed out 
that the terms p vr I r,e'121  occurring in Eqs. (4) and (5) 
are the sources of quantum interference [17] and contribute 
to the trapping conditions. However, in our analysis they are 
neglected under the approximation co 1 ,>F1 ,2 . Thus the be-
havior is different from that reported in [13], where the de-
pendence on the alignment of the the dipole moments led to 
trapping conditions. No such conditions exist in our system. 

FIG. 3. The spontaneous emission spectra S( 8) (iii units at 
F-1) for n,,n2 =r and Is/ 31-0.i1'. co= (a) 0, (b) 7742, lei 17.1,) ,  

37r/2. 

III. RESULTS AND DISCUSSION 

Our system reduces to the usual form of Autler-Tim 
scheme where the spontaneous emission spectrum is split 
into doublets [16] when the atom is initially prepared in tltc 
state la 2) and the Rabi frequencies 1/ 1 .f/ 2  as well as the 
decay rate F1  are equal K,  zero. If the atom is initially per 
pared in a coherent superposition of the upper t\1 /4 •1 loc!. 

Illf(0))=- (e i`Pria l ,[0})+Ia,,{0}))/V2, and the deca.  
r t  and 1'2  are nonzero, there are four peaks in the spe, 
originating from dynamical Stark splitting of the upper 
levels [19]. The variation of the relative phase of the 
and driving lasers results in a similar effect to the one 

ported recently [17]. 
Next we discuss the spectrum as given by Eq. IIhi 

equation contains two major parts due to the two bale iinv• 
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FIG. 4. The spontaneous emission spectra S(5) (in units of 
r-i) for 121 ,12 2 — 0.31' andIS131— r. 0—(a) 0, (b) ir/2, (c) ir, (d) 
3rr. 

states. Each part contains three terms corresponding to three 
peaks associated with the three dressed states. 'The equation 
therefore leads to a spectral behavior consisting of six peaks. 
The interference terms occurring in the equation have negli-
gible contributions. Therefore, the peak heights contributed 
hy the two bare states are (cr:1+A2)/4.1(i= 1 — 3 ) and (ceil  
-07)/i.7 (i=4-6). respectively. In what follows, we as- 

(2) gime g k  —gk  .1 I = F,= r. and tu12 = 10F. In the follow- 

	

ing discussion the Rahi frequencies 0 1 , 0,, and f 	are 
riven in units of F. 

We consider the effects of the dynamical variables. 
-tamely. the amplitudes, or more precisely the Rabi frequen-
:ies. and carrier phases. of the driven fields on the spontane-
los emission spectrum. The variation of the phase 4p associ- 

n 
0 

S 

FIG. 5. The spontaneous emission spectra St ti) (in units of 
T- i) for 	,fi2 =0.1F and 11231=0.51'. cp=(a) .7/2. lb) 

ated with the microwave field influences the spontaneous 
emission spectrum efficiently. In the spectrum equation all 
the terms, except the central terms, are. significant when 

n1,112.1.031= I and 9=0. The plot for these values shows 
an extremely suppressed central peak and enhanced side 
peaks. Furthermore, for the two bare states, the height of one 
is larger than the other [see Fig. 2(a)]. The peak heights are 
4.2, 0.025, and I for the two hare states. The central terms 
reach their maximum when ip is varied from 0 to 7/2 in Fig. 
2(a). Now all terms are significant. In this case, the plot 
shows a suppressed central peak and equally enhanced side 
peaks for the one hare state and vice versa for the secoml 
[see Fig. 2(1)1]. Here the peak heights are 0.80, 0.28. 0.80 and 
1.35, 2.25, 1.35 for the two hare states. When tp is further 
varied from /r/2 to IT in Fig. 2(b), the new spectrum is . just 
the mirror inversion of Fig. 2(a) [see Fig. 2(c)]. and we get 
the mirror inversion of Fig. 2(b) if 9 is varied to 377/2 [see 
Fig. 2(d)]. We note that the peak height varies with cp: how-
ever, there is no appreciable change in the position of the 
spectral lines on the frequency axes. This behavior is in 
agreement with the coherently driven three-level .\ he 
atom of Martinez et al, [10]. Moreover. the occurrence of a 
mirror image at 9+7 also agrees with the said reference. 
The enhancement around ir/2. 31r/2 and strong suppres. 
around 0.7r of the central peaks is in accord with the ‘kolk 
Paspalakis and Knight reported recently. where then used 
relative phase of two lasers of the same frequencies to 0 ,11-
trol the three-peak sponianei‘us emission spect rum in a totii 
level atom [In 

The shape of the spontaneous emission spectrum 
strongly influenced by the variation of the Rahi frequencies. 
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For instance, when the Rabi frequency IS/ 31 in Fig. 2(a) is 
reduced to 0.1 (with 14 1  ,11-2 = 1) and cp= 0, the contributions 
of the central terms are negligible. This is also evident from 
the plot, where the central peaks are extremely suppressed 
and the side peaks are enhanced; moreover, the height of one 
side peak is slightly larger than the other [see Fig. 3(a)]. The 
central terms still remain negligible when cp is varied from 0 
to m2 in Fig. 3(a). We find an extremely suppressed central 
peak but equally enhanced side peaks [see Fig. 3(b)]. When 
sc is further varied from 7r/2 to 7r in Fig. 3(b), the new spec-
trum is just the mirror inversion of Fig. 3(a) [see Fig. 3(c)] 
and we get the mirror of Fig. 3(b) if (F) is varied to 377/2 [see 
Fig. 3(d)]. The decrease (increase) of the Rabi frequency 
I5131 depopulates (populates) the central dressed states of the 
two bare states and therefore, for the optimum value of the 
Rahi frequency, the spontaneous decay rates become negli-
gible (maximum). 

It is worth noting that the height of the central peaks 
increases and the side peaks decrease with decrease in the 
Rabi frequencies fl i  and n,. In addition, the width of the 
central peaks gets extremely narrow for low values of the 
Rabi frequencies, whereas the side peaks are suppressed al- 
most completely. For example, when fl ,f12 = 0.3 in Fig. 
2(a). :he central terms dominate over the others. The plot 
shows extremely suppressed side peaks and equally en- 
hanced central peaks. Moreover, a remarkable spectral nar- 
rowing is also seen [see Fig. 4(a)]. The peak heights in this 
case are 9X 10-33, 17, 0.6 for the two bare states. On vary- 
ing kp from 0 to 7r/2, one of the central terms increases while 
the other decreases. This is also clear from the plot, where 
the ce Aral peaks are enhanced and one peak is larger than 
the other [see Fig. 4(b)]. In this case the peak heights are 
0.03, 2.8, 0.03 and 1.5, 24.6, 1.5 for the two bare states. 

PHYSICAL REVIEW' A 62 013811 

When cp is further varied from T-12 to Tr, the new spectrum k 
just the mirror inversion of Fig. 4(a) [see Fig. 4(c)] and we 
get the mirror inversion of Fig. 4(b) if cp is varied to 317/2 
[see Fig. 4(d)]. We note that the width of the lines emanating 
from the central dressed states becomes extremely narrow 
when the Rabi frequencies are further reduced. This spectral 
narrowing is associated with slow decay rates. The result 
agrees with that of Zhou and Swain [18] in obtaining line-
width narrowing•of one of the dressed states near the quench. 
ing condition in the context of resonance fluorescence of a 
closed V-type atom. Decrease.(increase) of the Rabi frequen-
cies (11  and 512 , depopulates (populates) the side dressed 
states of the two bare states and hence, for optimum values 
of the Rabi frequencies, the spontaneous decay rates from the 
states become negligible (maximum). 

Obviously, the width and the peak height are strongl 
influenced by variation of the Rabi frequencies. It is interest-
ing to note that, in Fig. 4(b), the central peak of one bare 
state starts almost to disappear when the Rahi frequencies 
111 ,112  are kept at their lowest values and 1.0 31 is reduced. 
For instance, if n1 ,n2 -0.1, In31=0.5, and cp-= 7712. the 
heights of the three peaks of one bare state are 0.05 with a 
narrow central peak, whereas for the second bare state the 
heights are 87 for the central peak and 0.05 for the side peaks 
[see Fig. 5(a)]. When cp is varied from 7r/2 to 37r/2 in Fig. 
5(a), the new spectrum is just the mirror inversion of the ()Id 
one [see Fig. 5(b)]. 

In summary, we have shown that by choosing appropriate 
parameters for the amplitude and the phase of the driving 
fields, we can obtain a very wide variety of spectral behavior 
ranging from a very narrow spectral line to up to six spectral 
lines of varying widths. The present system is very cast) 
realizable experimentally. 
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I. INTRODUCTION 

Quantum-state measurement has been a subject of great 
interest in recent years [1-4]. As all the information of a 
quantum system is contained in the density matrix p of the 
system. so  the measurement of the density matrix elements 
will completely characterize the given quantum state. The 
Wigner function of a quantum state bears a one-to-one cor-
respondence with the density matrix p of the state [5]. Once 
the Wigner function of a quantum state is known then the 
corresponding density matrix elements of the state can be 
worked out by employing the Wigner formula [6,7], On the 
measurement side, a balanced homodyne detector measures 
the linear combination of the creation and the annihilation 

operators {qa f exp(i0)+a exp(—i0)11 of a quantized field 
[8.9]. This linear combination of creation and annihilation 
operators is also termed as the generalized or rotated quadra-
ture of the field and the phase 0 of this quadrature is given by 
the phase of the local oscillator in the balanced homodyne 
detection scheme. Two specific phases, 0=0 and 0= 7r/2, of 
this generalized quadrature x( 0) are the same quadrature 
phases x(0) and x(7r/2) as have been introduced in relation 
to squeezed and coherent states of a field [6,10]. 

Vogel and Risken [11] have shown that the quasiprobabil-
ity distributions such as P, Q, and the Wigner function hear 
a one-to-one correspondence with the generalized quadrature 
distribution function w(x, 0). From a set Of measurements of 
the generalized quadrature amplitude x( 0) in the balanced 
homodyne detection scheme, the quadrature distribution 
w(x. 0) can he known, and hence by tomographic imaging of 
this distribution, the P, Q, and the Wigner function can be 
obtained. Following the same scheme, Faridani et al. [12] 
and later Mlynek et al. [13] have experimentally measured 
the quantum state of the radiation field. Recently, some other 
methods have also been proposed for the measurement of the 
quantum state of the radiation field. These include methods 
based on absorption and emission spectroscopy [14], the 

*Present address: Department of Physics, Texas A&M University, 
College Station. TX 77843.  

conditional measurements on the atoms in a micromaser 
[15], dispersive atom-field coupling in Ramsey method of 
separated oscillatory fields [16], as well as some others [17] 

However, the quantum objects are highly feeble and deli-
cate entities. Their subtleties remain highly obscured in the 
measurement process owing much to the detectors inefficien-
cies. In some recent studies, it is shown that the measured 
quadrature distribution w(x, 0) becomes smoothed due to the 
finite detection efficiency [18,19]. As a result, instead of the 
Wigner function, smoothed quasiprobabilities are con-
structed [19]. In this paper. we propose a scheme for the 
measurement of quantum state of the radiation field using 
two-photon correlated-emission laser (CEL) [20-25]. During 
the amplification through a phase-sensitive amplifier, there is 
no noise in the quadrature of interest and all the noise is fed 
into the conjugate quadrature. Therefore, the quantum infor-
mation remains intact in one quadrature phase of the field 
and may be extracted out of it for the construction of quan-
tum state of the field. 

In order to construct the Wigner function of the quantum 
state, we require a set of distribution functions w(x, 0) for 
quadrature values x(0) for 0 varying from 0 to 7T. To obtain 
noise-free amplification for different quadrature phases, we 
prepare the amplifier in different phases (p, accordingly. We 
have calculated the quadrature distributions for any arbitrary 
quantum state after its amplification through a phase-
sensitive amplifier. The distribution function of the noise-
free quadrature is then used to construct the Wigner function 
of the quantum state using quantum tomography. We apply 
this model to a Schrodinger cat state [26] and discuss the 
reconstruction of the corresponding Wigner function after its 
amplification through a( two-photon CEL. Our proposed 
method is insensitive to detector efficiency which poses .e 
rious problems in observing the nonclassical features assort 
ated with the quantum state. In a recent paper. we 
shown that the quantum interferences associated ss ith 
Schrodinger cat state can be observed using phase-sensiiike 
linear amplification [27]. It may he pointed out thdi the 
phase-sensitive amplification of the Schrodinger cat state and 
the resulting nonclassical characteristics during the amplili. 
cation process are discussed in Refs. [25.28]. 
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H. MEASUREMENT OF THE QUANTUM STATE 
USING TWO-PHOTON CEL 

We consider a two-photon phase sensitive linear amplifier 
[20], which consists of three-level atoms in cascade configu-
ration. The atoms are initially prepared in a coherent super-
position of levels la) and lc), i.e., the initial density operator 
for the atoms is given by 

P,=Paala)(al+Pacla)(cl+Pcolc)(al+pccic)(cl. (1) 

We assume that such atoms are injected at a random injec-
tion rate R inside the cavity where they interact with the field 
for a time r (see Fig. 1). It is assumed that the cavity field is 
resonant with the atomic transitions I a)—lb) and lb)— lc) 
and R r< I such that there is only one atom at a time inside 
the cavity. The evolution of the reduced density matrix of the 
field pF  is given by the following master equation [6]: 

A 
1)  F=  7-(N+ I)[aat pF-2at pFa+ pFaat] 

A 
— 2N[atapF-2apFat  pFat  a] 

A 
— —

2 
M*[aapF-2apFa + pFaa] 

A 
— —

2 
M[atat pF-2at  p Fat + pFatat ], 

where A =Rg 2 
 
7-2(paa — p„) is the gain coefficient. Here g is 

the atom-field interaction constant and Paa  and p„ are the 
density matrix elements corresponding to atom in level a and 
c, respectively. The constants N and M are defined as 

Pcc  
N— 

(1). —  Pc,)' 
(3) 

Pac  
M= 

(Paa"Pcc) •  

the terms proportional to M contain the phase-sensitivity of 
the coherent atomic superposition. 

The Wigner function W(a,t) is defined in terms of the 
density operator p F  by [6] 

FIG. 1. The schematic diagram of the two-photon phase-
sensitive linear amplifier and the measurement of the noise free 
quadrature via balanced homodyne detection scheme. 

+. +. 
W(a,t)= 2 

r  
Tr{exp[ — )3( a* —a s ) 

0*(ce — a)]PFL (4) 

The master equation (2) for the reduced density matrix p F  
can be rewritten as the following Fokker-Planck equation for 
the Wigner function: 

c? 	A (d 	d 	02 

—W  T t 
+ 

 at 	 r ) 
a*+M— 

(kr 

	

0

2 ) W. 
	(5) +M* 	 2(N+ 1/2) 

c?a* 2 	 dad a* 

A solution of this equation yields the evolution of the 
Wigner function for any arbitrary initial quantum state [29] 

f+. 
W(a,t)= 	d 213W(s3,0)W,JamP,0). 	(6) 

where the conditional probability We(a,t;P,O) reads as 

(7) 
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(a.,:p,o)= 

   

   

'Tr( G — 1) V[(N+ 1/2)2  —1M1 2] 

( 	(I al  cos(11- - y2/2) — \FO1 pl cos( 80 —  4)/2)2 	[1a1 	sin( -19 — cp/2) — \Z1/31sin( 	— 4)/2)12  
x exp 
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Here G=exp(At) is defined as the gain factor and the corn- 	Here we look at the measurement of the quadrature dis- 

	

plex quantities a, )3, and p„,. are expressed in the polar 	tribution co(x, 8) for the amplified quantum state. A hoino- 
forms as. a =jalexp(i 	p = 1/31exp(i00 ), and pa, 	dyne detector measures the quadrature component 
= ip„, lexp(i9). In the case of perfect coherence we have the 
relation ip„,4= \'p„„p,.,.. We therefore, define a squeezing 

(at  e lei+ a e - parameter r such that [30] 
x(0)=x(6)t  — 	  

(8) 

In a balanced homodyne experiment, 8 can be varied 

	

In terms of the squeezing parameter r, the constants N and 	shifting the local oscillator phase. A complete distribution 
!MI are defined as 	 for x(6) is given by the quadrature distribution u.)(x,H). 

Such distributions have recently been measured employing 
N=sinh2(r), 	 quantum optical tomography. 

The quadrature distribution w(x, 0) for the amplified field 
sinh(2r) can be obtained from the Wigner function W(a.t) by using 

MI 	• 	 (9) 
the following relation [la 

	 1 

, 
tanh-r= 

Pa„ 

w(x,0)= 	 I d2 ad 77W(cr,t)exp[— i 77(x — axcos 0— a,sin 0)]. 
21T 	 - 	-.CO 

On substituting for 11/(a,t) from Eq. (6) into Eq. (11), we obtain to(x, 0) for the amplified quantum state 

, ) = NiT 	   Tr vi(G— I AN+ 1/2-1 	

1 

IM1cost2 0— 9)]f

+. 

 

—2(x— \Z(,13,cos 0+)3,sin 9)) 2  

(G — 1 )[N+ 1/2-1M1cos(2 0-0]1.  
(121 

d20 W(/3,0)exp 

Equation (12) indicates a one-to-one correspondence between the phase 9 of the atomic coherence and the phase 0 of the field 

quadrature. In order to reconstruct the Wigner function of the initial quantum state, we need a set of distribution function 

cot 1. 0) for different values of 9 varying from 0 to 7r. 
The Wigner function can be constructed by amplifying the signal such that there is no noise in the desired quadrature and 

all the noise is fed into the conjugate quadrature. It follows from Eq. (12) that an amplified signal without added noise in the 

quadrature x( 8) can be obtained if we choose 2 0-9=0. To obtain the noise free amplification, we prepare the atoms in a 

coherent superposition of levels la) and lc) with a particular phase 9. The atoms are then injected inside the cavity where the,  
amplity the initial quantum state. The noise free quadrature can be obtained by adjusting the phase of the local oscillator tl 

such that 6= (p/2. To find the complete set of distributions o)(x, 0), we prepare the amplifier for a set of values of atomic 
coherent superposition phases (p ranging from 0 to 27r and obtain noise free amplification for the desired quadratures. The 

Wiper function can then be reconstructed from the measured values of w(x. 0). 
The noise-free quadrature distribution is given by 

N

r  	 ( — 2(x— \ra[fi,cos 0+3,sin 0])2  
(.0(x,9)= 	

f 	_ 
t/ 2 /3 4 (p,O)exp 

	

G — 1 )exp_( ..: 2 r) J 	 (G— 1)exp( — 2r) 
(13: 

where we have used 

(G— 1 )(N+ 1/2-1M1)=1/2(G —  1)exp( —2r). 	 114( 

Here r is the squeezing parameter. 
Once the quadrature distributions of the amplified signal are measured in balanced Wornodyne measurement. then tlic 

complete Wigner function is determined by carrying out the inverse Radon transformation familiar m tomm2raphie imagim; 

111). 

J 
IV( a, ,a,.)= --7, l ' 1' 	Ircir(x, 0)1 r7lexp[ i ri(x — cr.,.cos 0— orysin 0)]‘/.1 (172(10. 

47r - 	. - - ,  

In order to obtain the Wigner function of the amplified state, we substitute Eq. (13) into Eq. (15). and readily find Wt 	.(1.  I 

to he given by the following relation: 
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(20) +exp
( —[1 +(1 — 1/G)exp( 	2  

8 	
77, 
	

i Vi[ a:cos 0+ (a:— if0)sin 0]) 

(10) 
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1 
W(a,,a,)= 47,2111" III:d2 fid rid OW(P.0)1 VI 

	

( 	(G— 1)exp( —2r) , 
c 

	

X exp 	
8 	7r iax-lopocose+(ay- j if3,)sin 0]). 

For G=1, we obtain the Wigner function for the original state. 
In terms of the resealed variables a; = a.,1 VG and a:= ay  /Nra, Eq. (16) reduces as 

1514 

dis-
Inn- 

(16)  

(17)  

' " d 2 	171' cl8W(P,0 )117'1 4,7r2 I1 	o  

( 
x ex 	

(1 — 11G )exp(  — 20 
 n
,z_ 	a t _ Adcos 0+ (a: — /3, )sin 0 p 

	

	 ]). 
8 

loon 

ing 

held 
using 

For sufficiently large squeezing, i.e., for 	we obtain the same original state for any arbitrary value of the gain parameter 
6>1. This shows that the proposed scheme allows us to fully reconstruct the original quantum state after its amplification 
through a phase-sensitive linear amplifier. However, an appropriate resealing of the measured distribution is required. 

As an example, we consider the Schriidinger cat state, which is the superposition of two coherent states Ifo) and 1— f11).  
1111 	'Inch are 180° out of phase with respect to each other, 

NiKr[14)+1—  fo)]. 	 (18) 

itere N- 1 =2[1 + exp( —2d)] is the constant of normalization and 5e  is taken as real for the sake of simplicity. The Wigner 
finction W(/3,0) of this state is defined as 131] 

112) 

iction 

	

field 
	

W(/3.0) — p[ 	4)2-2/4]+ exp[ — 2(flx+ 6)2—  2fi;]+2 exP( — 29!-2,3;1.)cos(44fiy)}. 
/41+ exp( - 2 din  -ex— 

1 

(19) 
-e and 

The Wigner function of the amplified Schrodinger cat state can be obtained by using the expression for W(/3.0) in Eq. (17). in the 
ki terms of the resealed variables a;= a.,1 VG and cr;,=ay l, it is given by the following: s in a 

e they 

	

atm 11 	

W(a;.a:.) — 	 { 	— 	  r dri defyI  exp( 1+m 	
[1+(1-1/G)exp(— 2r)] , 

• 8/r2[ I +exp(-2d . 
itomic 

	

The 	 )] 	o 	 8 

)
8 	11 	I ri   

[I +(1 — I/G)exp(-2r)] ,2_  . , 	, — i771(C4+6)C010+ ay 	+exp Sin el 	 [(ax — Cocos 0+ a:.sin 61) 

	

(131 
	

' —[1+(1-1/G)exp(— 2r)] ,2  
+ exp( — 2 fl) X 	exp, 	

8 	
— riqa;cos 0+(a:+ifo )sin 0] 

(141 

cn the 

	

taging 	
is clear that for sufficiently large squeezing, i.e., r—•0c, 

Jul for any arbitrary value of the gain parameter G> I , we 

Nain the Wigner function IV( 	for the initial Schro- 

	

151 	linger cat state which is quite interesting. In the next section, 
to present the results of our numerical simulation for differ- 

	

.n. 	:nt values of the squeezing parameter r and for G=1 and 

0. 

1 

III. RESULTS AND DISCUSSION 

Here we present the results obtained alter integrating Eq. 
(20). In Fig. 2(a). we show the plots of Wigner function for 
fo= 2 and G= I. The figure clearly shows twe Gaussian 
hills ut 	2, which is the location of two coherent states 
and oscillations on the conjugate axis due to the superposi-
tion of two coherent states. This is the well known behavior 
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FIG. 2, Plot of the aligner distribution tv(ax ,ay
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or the schthdinger cat state. (a) For co=2 and 
 0.:::

ewe obtain the well known structure associated with the Wigner function for Schrodinger cat state. In (b)—(0, we show the ots of the igner

for f2. 
G =--- 14,r=0 (phase-insensitive amplifier/ and r=1, 2, 3 and 4, respectively. The plots clearly howl that Wigner function oft 

 
the initial

„=  
stale 

almost fully recovered with the increase in the squeezing parameter r. 

( 0 

associated with the Schrodinger cat state. In Figs. 2(b)-2(f), 
we plot the Wigner function for 6)=2, G = 10, and r 
=0.1,2.3. and 4, respectively. Figure 2(b) clearly shows that 
the well known oscillations due to the Schriidinger cat state 
vanish when it is amplified through a phase insensitive am-
plifier. However, for r= I and 2 [see Figs. 2(c) and 2(d)] the 

oscillations start appearing which is quite interesting. F
or 

strong enough squeezing, i.e., r= 3 and r 	we ali»thi 
fully recover the Wigner function correspondingto .n.ua,' ; 	;   
Schrodinger cat state. These results confirm our assenion 
that amplifying  the signal with the help of a phase-sensitise 
linear amplifier allows us to fully reconstruct the original 
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quantum state. However, an appropriate resealing of the 
measured distribution is needed. 

The Wigner function is reconstructed by taking the in-
verse Radon transform, once the quadrature distributions are 
measured after amplification through two-photon CEL. The 
quadrature distributions can be measured using. balanced ho-
modyne detection scheme. The parameters in the experiment 
should be adjusted such that field leakage through the end 
mirror does not occur during the amplification process. We 
have A=Rg 2 (o •. aa —  pcc) and G= exp(At), combining these 
two we obtain 

In G 

In conclusion, we propose a scheme to measure the quan-
tum state of the radiation field. The technique is based on 
amplifying the signal with the help of a two-photon CEL 
such that there is no noise in the quadrature of interest. Our 
scheme is insensitive to problems associated with the deteeS 
tor inefficiencies. In a recent paper, Lenohardt and Paul [32] 
have also proposed an interesting scheme based on anti-
squeezing the field with respect to the desired quadrature 
using degenerate optical parameter amplifier that also allows 
to overcome the problem of detector efficiency. 
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Abstract 

We propose a method to measure the photon statistics of a quantized radiation field in an electromagnetically induced 
transparency setup. The proposed method provides a direct way of measuring the photon statistics. This method is insensitive 
to the detector efficiency. © 1998 Elsevier Science B.V. 
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Electromagnetically induced transparency (EIT) 
was first observed by Harris [1,2]. Since then this 
effect has been studied intensively both theoretically 
and experimentally [ 3-5]. The theoretical studies as-
sume the driving field to be classical. In this paper we 
study EIT by a quantized driving field inside a cav-
ity and show that the absorption spectrum provides 
it direct means of measuring the photon statistics of 
the field. This method of measuring the photon statis-
tics has the advantage that the photon statistics of 
the radiation field can be directly measured from the 

spectrum without resorting to cumbersome numerical 
manipulations of the experimental data. In addition, 
the proposed method is insensitive to the detector. 
efficiency which poses serious problems in observing 
nonclassical characteristics of the field. 

The quantum stale of the radiation field is described 
completely by the state vector 10) for a pure state and 
by the density operator p for a mixed state. The diago-
nal elements of the density operator with respect to the 
Fock slate gives the photon distribution function. The 
photon distribution for many fields may demonstrate 
novel nonclassical features such as an oscillatory be- 

havior in the case of single-mode squeezed vacuum 
state [6] or the Schrodinger:cat state [7 ] . It is a prob-
lem of recent interest to experimentally observe such 
nonclassical features of the quantum state of the radi-
ation field. 

The quantum state of the field is also determined by 
using optical homodyne tomography [8-10], which 
uses measured distributions of electric field quadra-
ture amplitude to determine the Wigner function and 
hence the density matrix. From the knowledge of the 
density matrix, information about photon number and 
phase distributions is obtained. It has also been re-
alized experimentally [1 I ] . Other schemes include 
methods based on dispersive atom—field coupling in a 
Ramsey method of separated oscillatory fields [ 12 ], 
atomic beam deflection [13], the conditional measure-
ments on the atoms in a micromaser set-up [ 14 ] , the 
Autler—Townes spectroscopy [15], resonance fluores-
cence [ 16], homodyning [17], unbalanced homodyn-
ing [ 18], photon chopping [ 19], and photon count-
ing [20]. 

In this paper, we propose a scheme to determine the 
photon statistics of the radiation field inside a cavit 
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using a set-up that is employed in the observation of 
electromagnetically induced transparency (EIT). In 
EIT, a three-level atomic system is considered. When 
the upper levels are driven by a classical field, the 
medium becomes transparent for a probe field resonant 
with the lower level transition [21]. The transparency 
results from the combined Stark splitting and quantum 
interference of the dressed states which are created 
by applying that additional electromagnetic field. The 
splitting of the level is proportional to the associated 
Rahi frequency. Heights of the peaks of the absorption 
spectrum are independent of the Rabi frequency. Peaks 
are displaced from resonance by an amount equal to 
the Rahi frequency. If the upper levels are being driven 
by a quantized field, the associated Rabi frequencies 
arc distributed according to the photon distribution of 
the driving field. The absorption spedtrum would thus 
mimic the photon distribution function of the driving 
field which can therefore be recovered from the spec-
trum. The condition under which the photon distribu-
tion function of the driving field could he recovered is 
that the associated vacuum Rabi frequency should he 
larger than the atomic decay rates. 

The method to determine the photon statistics based 
on Autler-Townes spectroscopy [15] is closely re-
lated to the one discussed in this paper. Another closely 
related scheme which has been experimentally real-
ized for the determination of photon statistics is that 
of quantum Rabi oscillatit n [22]. Rabi oscillations 
have been observed in vacuum and in small coherent 
fields. Its Fourier components show the discrete na-
ture of the field and the weighted Fourier components 
yield the photon number distribution in the field. 

We consider a system of three-level atoms (see 
Fig. I) initially in the ground state Ib) interacting with 
a quantized radiation field inside a cavity. The upper 
levels la) and lc) of the atom are driven by the cavity 
field which is quantized. We are interested in finding 
the photon statistics of the field. This is done by prob-
ing the absorption spectrut 1 of the I b)-Ia) transition 
via a classical probe field sif frequency v. The decay 
rates from levels la) and lc': are assumed to be y„ and 
yt., respectively. The Hami!tonian for this system, in 
the dipole approximation and the rotating-wave ap-
proximation, is given by 

Probe v 

Fig. I. Level scheme 

H = E wi l i)  + hv
f
at a + hg(la)(cla -I- c.c.) 

- 12-(p„beja)(ble-i''' + c.c.) , 	 ( 1) 

where i = a, b, c represents the three atomic levels 
with wi  being the transition frequency from the re-
spective levels, the coupling constant g is the vacuum 
Rabi frequency between the levels la) and Ic), a and 
at are the annihilation and creation operators of the 
cavity field, e is the amplitude of the probe field, and 
the corresponding dipole transition matrix element is 
represented by pab• 

As the atoms are prepared initially in the ground 
statelb), we have en)i,,, = p„.„ and p,(,°„1„„ = 

(0)  
+ I ,C11+1 = 0. We now show that the photon statistics 

of the radiation field inside the cavity can he deter-
mined by looking at the absorption spectrum at the 
lb)-la) transition. 

The polarization of the medium is given by 

P = E0A's = Pah[ Pah + c•c•]• 
	 (2) 

Here x is the linear susceptibility whose real part is 
related to dispersion and the imaginary part gives the 
absorption spectrum. It is clear from this equation that. 
in order to find the susceptibility, we first need to de-
termine the matrix element p„„.b„. A sum over,/ would 
give p„b, and hence X. 

The matrix elements p„„,b„ and pc„.4_ 1 ,b„ form the 
following coupled set of differential equations, 

=J5 dt 	
Y Pan,bn 

- 1 ( pab8/2h)e —iv,(Am.an 	Phil.b;1) 

- igVn + I Pen ± I ,bli 

	 lb> 

for the atom. 

dPan,bn  
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d  Pc"+ I.1,, 
 

dt 
— i(toabel2h)e—iv` r-cn+I ,an.g.11177-  Pan.bn•  (4) 

As we arc interested in the linear susceptibility, we re-

tain the matrix elements p„„„„, pi„,,,„ and pe„.o.„„ on 

the left-hand side up. to zeroth order in the field am-

plitude e. We therefore make the substitutions 4,0„),„, = 

p„„ and (1,;),.)„„ = p(t.;: )+1.,„4.1  = 0. The slowly varying 

matrix elements Am p„,(t) = p„,,g,„( t) exp( if/0 then 

satisfy the following equations of motion, 

di3on.b11,(  
= 	( 	+ Ya )Atii.bnk  ( t ) 

dt 

+ i( fd„be/2h)p„, — 	Prnl 1.1,M(1), 	(5) 

dA314-1.b 

dt 
"4(  	= (i5 + --15100cn+1..bilf(t) 

— ig 	1 	t ), 	 (6) 

where 8 = w„„ — p is the detuning. 

Eqs. (5) and (6) can he written in a compaCt form 

as 

1)(t)=—MP(t)+Q, 

where 

The complex susceptibility x of the medium can 
be determined using Eqs. (2) and (10). The real and 

imaginary parts of the complex susceptibility arc 

X /  ( 8 ) = 	p(n) 
IPab128  

4€0 r 

x 
Ye(Ya + 	+ 2182  — g2 (n + I) — y„y, /41  
182 	g2 (11  + ) yayepti 2 + 32 ( y

a 
 y

, 
 2 / 4 

( I 	) 

1 2  
x"(8) 

= 80,,b1 
	 P  

4€0h 	
OO 

x 	
g2 (ti + 1) — 62  + y„yd4 + 82 ( y„ + y, ) 

[32  — ,c2(il + I ) 	YoYe/412 62(ya 	Y, ) 2/4 .  
( 12 ) 

For exact resonance (8 = 0) and ye  < y„. both the 
real and imaginary parts of the-susceptibility vanish. 
The medium therefore becomes transparent. This is 

the condition of the electromagnetically induced trans-

parency. This result is valid for arbitrary photon statis-
tics of the driving field. 

Eq. (12) can he rewritten as 

A/n(3) = Ep(n)4(3). 
	 (13) 

11 

Q= 	 • 

PM= 	-=•{ 	'  1jan Inn ( t ) 

Pcn I- I ,bnt l I ,i1 ' 

M = [
i3 + y„/2 ig VW-----1- 1 1 

ig‘fir+1 i5+ ye /2 i 

[ ( iPabe/2h)p,,,, 

] 

A steady-state solution of Eq. (7) is given by 

P(t) = 

The matrix clement p„„), can be determined from Eq. 

(9). It follows, on taking a trace over the field states, 

that 

icgabe 
Pab(t) = 	2_, P 

2I. 
11 

(45 + ye/2)e—iv' 

(i5 + y„/2)(i8 +.yc/2) + g2 (it + 1) 	
(10) 

where p(n) 	p„,,)  is the photon distribution function 

of the driving field inside the cavity. •  

The function 4(S) has double peaks located at 5 = 
±gVW----1- 1. The height of both the peaks is propor 

tional to 1/y„. An important and interesting fact is 

that the height of the peaks is independent of the ex-

citation number n. Fora plot of AIM versus 52  —,1;2. 

there is only one peak located at g2 n. 
Including the contributions from all the photon ex-

citations in the photon distribution function p(n) and 

in the limit that the decay rate y„ is much less than 

theyacuum Rahi frequency g of the driving field, we 
get the complete absorption spectrum, as shown in Eq. 

(13). This absorption spectrum (/'(S) versus 52.) 

will mimic the photon distribution function p(n). 
We next illustrate our results by considering the 

example of a Schrodinger-cat state which is a coherent 

superposition of two coherent states, i.e., 

cfr = 	(Ia) + I — a)) ,  V.TV 
where 

Ar = 2( 1 + e-21"12  ) 	 ( 15 ; 

(7)  

(8)  

(9)  
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of the medium can 
d (10). The real and 
;usceptibility arc 

(n + I) — y„y,./41 

	

2 + 52  (v,, 	yr)2/4' 

( I 	) 

/4 1 + (ya  Yc)  
2 + 52( y

a 
 4. ) 2 / 4 

( 12) 

d y, < y„, both the 
susceptibility vanish. 
transparent. This is 

•tically induced trans-

-bitrary photon statis- 

(13) 

peaks located at 6 = 
the peaks is propor-

id interesting fact is 
dependent of the ex-

(S) versus 82  — g2, 

g-n. 
-iu all the photon ex-
n function p(n) and 
/‘, is much less than 
the driving field, we 
rum, as shown in Eq. 

( x"( 3) versus 82 ) 
function p(n). 

by considering the 
c which is a coherent 
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Hp. 2. (a) The photon distribution function of a Schrodinger-cat 
stale pot) versus n at a = 4. (b) The corresponding absorption 
spectrum ,y" (in arbitrary units) plotted against 821g2  — I with 
y,,/g = 0.1 and y, /g = 0.0001. (c) The recovered photon distri-

. bunion front the spectrum x". 

is the normalization constant. Here a is assumed 
to he real. The photon distribution function of the 
Schriidinger-cat state is given b: 

p(n) = 4e-1a1 icifiyyn , 2 	
when n is even, 

(16) when is odd, 

The photon distribution is thus z- n oscillatory function 

of n. These oscillations arc man. festations of nonclas-
sical features of the quantum statistics. 

In Fig. 2a. the photon distribution function 	is  

plotted against n. The corresponding absorption spec-
trum x".(3) versus 8.2 /g2  — 1 is plotted in Fig. Milk 
The photon distribution function, recovered from the 
absorption spectrum in the same way as mentioned 
above, is given in Fig. 2c. • 

This scheme for the measurement of photon statis-
tics through EIT is feasible within the presently acces-
sible experimental limits [231. A small Fabry-Perot 
cavity, as reported by Hood et al. 1 241, where a single 
atom interacts with a cavity field, is appropriate for 
our scheme. Here g = 60 x 27r MHz, which is deter- • 
mined by the cavity.  .geometry, and the atomic decay 
rate y = 2.6 x 27r MHz. These values are in accordance 
with the condition required by our scheme that g >> 
y in order to resolve the peaks of the photon distri-
bution clearly. An improvement would he required as 
far as the cavity interaction time is concerned, which 
is small in this case, contrary to our requirement. In 
the microwave region, however, a large cavity inter-
action time r,• has been observed in addition to the 
desired values of g and y 1 251. The values are g = 
17 x 27r MHz, Te  = 6 x 2/r kHz and y = 5 x 27r- H. 
Ond discrepancy, however, has not been encountered 
here; the values of g and y r&ferred to here arc for the 
same two levels, which is not our case. 

In this paper we have discussed a method based 
on absorption spectrum to measure the photon statis-
tics of the radiation field using electromagnetically in-
duced transparency. This is a conceptually simple, and 
direct method and involves no cumbersome numerical 
inversions like that used in some other schemes for 
the same purpose. Another advantage of this method 
is that it is insensitive to the detector efficiency, which 
can create serious problems in the observation of non-
classical features of the quantum states. 
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We consider the teleportation of entangled two-particle and multiparticle states and present a scheme for the 
teleportation that may be suitable for both entangled atomic states or field states inside high-Q cavities. 
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I. INTRODUCTION 

The notions of coherent superposition and entanglement 
in quantum mechanics lie at the conceptual foundation of 
quantum mechanics as evident through fundamental contri-
butions like bell inequalities [I] and Greenberger-Horne-
Zeilinger (GHZ) equalities [2]. These alternative concepts 
are finding interesting and useful applications in the field of 
quantum computing and quantum information. 

One of the key problems in quantum communication is 
how to transmit a quantum state from one observer to an-
other and keep the received state exactly the same as that 
sent without necessitating the movement of an information 
carrier. This can be accomplished in two steps. First, the 
sender "disassembles" information of a quantum state into 
two parts, one of which is sent through a quantum channel 
run by the nonlocal correlation between two entangled quan-
tum entities, and the other of which is sent through a classi-
cal channel. Second, the receiver "reconstructs" the state on 
the basis of information from both the quantum and classical 
channels. Because in this process a quantum state to be trans-
mitted is destroyed in one place and later reconstructed in 
another place, this transmission is termed as teleportation of 
a quantum state. Bennett et al. [3] proposed a scheme for the 
teleportation of an unknown quantum state from one ob-
server to another through dual Einstein-Podolsky-Rosen 
(EPR) and classical channels. 

Since this proposal was made, a number of experimen-
tally feasible schemes have been suggested for the teleporta-
tion of two-level atomic states [4-13] and field states [14-
16] for two-dimensional states to N-dimensional states [17]. 
Most of these schemes rely on methods based on cavity 
quantum electrodynamics in which two identical high-Q 
cavities are initially prepared in an entangled state. Quantum 
teleportation was experimentally verified by producing pairs 
of entangled photons through the process of parametric 
down-conversion [18]. Recently, a scheme has been pre-
sented that exploits the cavity decay for the teleportation of 
the atomic state of an atom trapped in a leaky cavity [19]. In 
addition to these schemes of discrete variables, much 
progress has also been made for the quantum teleportation of 
states of dynamical variables with continuous spectra [20— 

*Permanent address: Applied Physics Division, Pakistan Institute 
of Nuclear Science and Technology, P.O. Nilore, Islamabad, Paki-

stan. 

22]. The teleportation of a coherent state of the radiatit 
field [23] and the teleportation of a superposition of chir 
amplitudes have also been reported [24]. 

All these schemes are for the teleportation of single-quh 
states. In many potential applications of quantum computin 
such as factorizing a very large number [25] or searching a 
unordered quantum database [26], one needs the system 
many-qubit states. It is therefore an interesting questio 
whether we can teleport a multiqubit state. In this paper, w 
present a scheme for the teleportation of a two-particle (two 
qubit) entangled state from a pair of high-Q cavities to an 
other pair of high-Q cavities using methods based on cavil: 
quantum electrodynamics. This scheme is then generalize( 
for the teleportation of the N-qubit field state. 

II. QUANTUM TELEPORTATION OF AN ENTANGLED 
STATE 

In this section, we consider the teleportation of a two-
qubit entangled state of the radiation field in two separated 
high-Q cavities A i  and A, to another pair of high-Q cavities 

C, and C,. The entangled state of the radiation field is as-
sumed to be 

I /A(A ,A2)>= E 	cp,„,ip 432). 	(I) 
pi.,2=0 

FIG. I. Quantum teleportation of the two-qubit state 

gA A 2)) 	 , .„,In 	• 1111( 13  IC ;)) and 10( H,C2 1) 

are two entangled states. Cavities B i  and B, belong to :he sending 

station while cavities C, and C, belong to the receiving station. A 
four-bit piece of classical information transmitted front the sending 
station to the receiving station enables the receiver to reconstruct 

the original state. 
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It may be pointed out that this scheme also corresponds to 
the teleportation of entangled two-level atomic states be-
cause the atomic entanglement can be transferred to the two 
cavities by passing them through the two cavities with ir 
pulse. As usual, the teleportation of state (1) can be carried 
out in three steps, as shown in Fig. 1. 

In the first step, we consider the other two sets of cavities, 
B , C, and B2 , C2 , prepared in entangled states: 

BiCi))= 1/2—  ( IO B1,1c1 )+I1 ,0c,)), 

10(132C2))= 	(10/32 ,1C2) 	1 B2 ,OC2))- 

We then have 

10(13 B2 C i  C2)) = [1081,082,1c1,1c,)+1081,182,1c1,0c2) 

+ 1 1 8, 0B,,occ  1  c2) + 1 1 B,,IB,,0c1 ,oc2)1. 

(4) 

It is important to note here that for the teleportation of a 
two-qubit quantum state we do not need to prepare an en-
tangled state of four qubits. Instead, we need two entangled 
states of two qubits each. The combined state of the fields in 
the cavities A , A 2 , B 1 , B2, CI , and C, is therefore given 
as 

(2)  

(3)  

iv,(A,A 2 B,B2c,c2)>=1 E c -pi p2 IP1),4 1 1P2)A 2  p i  ,p2 =0 

X (1081 ,08
2,1c1 ,1c2)+ 1081 ,162,1c1 ,0c2 )+ I 1 8,,08,,Occ1 c,)+ I I 8,,I B„Occ0c,)). 	(5) 

Next we define the basis states for the A I A 2B 1 82  system: 

I 	1 42.0,0(A IA 2B1 B2))= i (I0A, ,0A2,1e,,1B2)+eh "121 0A, ,1A 2,181 ,08,) 

+eirill1A1,0A2,081,1B2)+ehr( ii + j2)11,i1,1A2,0B1,082)), 	 (6) 

I Oi l  42,13,1(A 1 A 2B 1 1:3 2))= i (IOA,,0A 2, 1 B,,0B2)+ei''i2 I 0A 1 ,1,4 2,1 B, ,182) 

+ ei'ill1,11,0A2,0B1,0B2)+ el1T(i 1+1211 AI JA2,0111 ,182)), 	 (7) 

I Oj i  42,1,0(A I A 2B 1 B2)) = (10A1,0A2,081,1B2)+ e i7j210A1 ,1A2,081,082) 

1
Ai , 1A 2,18 i ,082)), 1 	n 

I 	, j2.1.1(A02BIB2))=--  (10,4 1 ,0A 2,0B1 ,082)+ei7.121 0A c IA 2,0B, ,182) 

I ,OA2  ,1BI  ,OB2  )+e ir(jrfl2)1 1A I JA 2,1 B1 ,1 /32)), 

where 	0,1. We therefore have 16 basis states. The combined state I 1,1/(A I A 28 i  B,C C2)) can be rewritten as a linear 

superposition of the basis states I Oil  42  .1, 1 .1,2(A 1 A 2B 1 B 2)) of the A I A 2B 1 B, system as follows: 

I,,G(A 1 /1 213 1 /32C1 C2))= 	I 	.12,0,o(A IA 2B 1B 2))(C 0010 c c0c2)+ C ote Hri2 1 0  c 
42=0  

)+C1oeirri,I 1 cy0c,) 

C lei 	I 4. j2 ) I I C
i
,1 C

2
) ) I 	,

i2.
0
.

1 (A IA 2B IB2))( C001 0 C , C
2 
 ) CO 
	2 loccoc,) 

cioei17' I cc  1  c,)+ ci 	ccoc,)) 

021311.31))( C001 I CI ,0c,)+Coleirri211c1,1c,)+ 

,lc2 	/ ))+Itii•14  •2.1.1(A 1 ,4 2,6 1 /32 ))(Cooll ci ,10+Coleinh l I ci .0c,) 

CtoeivillOcolc2)+Cliei77(ii+j210c1,0c)). 
	 ( 10) 

r+ ° 
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In the second step, we make a measurement of the 
A I A 2 B 1 B 2  system. A detection of the A I A 2B 1 8 2  system in 
the state I  (Ai ..12 ,k  ,k2(A I A 2B1 B2 )) projects the field state in 

the cavities C I  C2  into 

I Ch( C 1 C2)) 	ei trUiP1 4- i2P2 )c 	l(k
1  + p )mod2)c1  PI.P2=0 	 P 11'  

X I (k, +p2)mod2)c2. 	 (11) 

The field state in the cavities C I  C2  has thus been projected 
to a state that has all the information about the amplitudes 

Cp i p,. 
In the third and final step of the quantum teleportation, a 

manipulation of the cavities C1  C2 needs to be done to bring 
state (11) to from (I). in thr f.-,!lowing sections we give the 
details of these three steps. 

A. Preparation of entangled states 

In the first step, we prepare two pairs of cavities B 1  ,C 1  
and B,,C2  in entangled states (2) and (3). This can be done 
by passing a two-level atom initially in the excited state 
through the two resonant cavities. The interaction times of an 
atom with two cavities are chosen to be such that we have a 
7712 pulse in the first cavity and a it pulse in the second 
cavity [6]. Initially, the two cavities B 1  and C1  are taken in a 
vacuum and the two-level atom is taken in an excited state 
la). When the atom has undergone a 77/2 pulse in the first 
cavity, the second cavity is still empty and the atom-field 
system is in a state that corresponds to a linear superposition 
with equal weights of la) and Ib) atomic states correlated to 
zero and one photon, respectively, in cavity B 1  as 

Itfr(B cl))= — (1b
V2 	

,1B )+1a,on,))0i0ci ). 	(12) 

If the atom is still in an excited state la) after leaving cavity 
B i  in its vacuum state, it will, with unit probability, be trans-
ferred to lb) by the 77" pulse in cavity C1  and leave a photon 
in the second cavity. If it emits a photon in cavity B1  and 
exits it in level lb), it will be unaffected by its coupling with 
the vacuum in cavity C I  and will leave the second cavity 
empty. Thus the atom always exits-from second cavity C I  in 
state Ib), while the field is left in the entangled state (2). 
Similarly, we prepare another pair of cavities, B, C,, in en-
tangled state (3). 

B. Measurement of !O l j2.k, ,k2(A 1,4 2B1B2)) 

The second step of the teleportation iti the measurement of 
the Bell states 	.i,.k  .k,(A 1 A 2B 1 B,)) of the A I A,B 1 8 2  

system. The subscripts j i , j,, k i , and k, have the values 0 
and I. Among these, k 1  and k2  can be determined by the 
number of photons inside the four cavities, while j i  and 12  
can he determined from the relative phase of the states. Thus 
the state 10- •k2  (A A,B I  B2 )) can be determined in two . 	_  
Sets of measurements, the first determining k 1  and k, via the 

total number of photons inside the cavities, and the second 
determining j i  and 12  via the relative phase. It is. clear 

2.0  that the cavities in state rfr• 4  • 0 (A A,B I B 2 )) have two 
photons, those in states 	tiiji 42.0,1 (A 1 A 2 B I B,)) 	and 

Oj i  ,j2,1,o(A IA 28 1 82)) have one or three photons, while in 
state l 	,i2,11 (A I A 213 1 /32 )) they h4ve zero, two, or four 
photons. 

There are a number of ways to determine the number of 
photons inside the cavities. We propose the use of Ramsey 
interferometry. In this scheme, we consider two-level atoms 
initially prepared in ground state Ib) that are off-resonant 
with the radiation field inside' the cavities. The cavities are 
placed between two classical microwave fields (Ramsey 
zones R 1  and R,) driving the Ia)-k lb) transition. When an 
atom passes from the first zone R 1  with a microwave field 
tuned at frequency (.1)„1,, it is prepared in a coherent super-
position of states ( I a ) I b))/V2. This atom is then passed 
through the two selected cavities with the same interaction 
time :n each cavity. During the passage through the cavi-
ties, a phase shift proportional to the photon number s in the 
two cavities is introduced as a phase of the state Ib) [27]. The 
resulting state of the atom then becomes 

-TO+ eis lb)]. 
	 (13) 

The atom is then passed through the second zone R,, again 
resonant with w,1,. The interaction time and the coupling 
parameters are chosen such that la)-4(la)+ I b))/172 and 
lb)--4(la)--lb))/V2. The final atomic state is 

e's°/2[cos(s 0/2)1a)- sin(s 0/2)1b)]. 	(14) 

The complete atom-field state is entangled and rather com-
plicated. We have therefore not reproduced it here. It is, 
however, clear that a measurement of the atom in state la) or 
lb) would reduce the fields inside the cavities to states with 
only an appropriate number of total photons in the two cavi-
ties. 

The first atom is sent through the two cavities A i  and B 1  
with the interaction time 0= 7r in each cavity. It follows 
from Eq. (13) that if the atom is found in the excited state la), 
the total number of photons in the two cavities is even, i.e., 
0, 2. This implies k l = 1, k2 = 0 or k i = 1, k2 = 1. If the atom 
is detected in state Ib), then the total number of photons in 
the two cavities is odd and k i = 0, k,- 0 or k 1 = 0, k,= 1. In 
the next step we make a measurement in the cavities A, and 
B 2  only with the same interaction time. A detection of .an 
atom in either the excited state la) or the ground state lb) 
completely determines the values of k 1  and k, according to 
the following sequence: 

la)la)101f  ••r••• • 1(A I A,131 13,)). 

I b)la ) 	I chj j
2.

0.1 (A IA 1B I B2 )), 

022307-3 
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1b)lb)lifri 2.0.0(A IA 2B 1B 2)) • 

For the determination of phase factors j 1  and 12  we make 
measurements in the cavities A and A2 only after first 
evacuating the cavities B i  and B2. However, during the pro-
cess of "emptying" the cavities B1  and 82, the relative 
phase between the component states in the resulting state 

(A A ,B1  B,)) may change. There are a number l'frit../.2.ki.4 -t 	1     
of ways to remove the photons from the cavities B 1  and B2. 

Here we consider two two-level atoms initially in their 
ground states lb). One of the atoms is sent through the cavity 
B 1  and the other through cavity B2. After the passage, the 
atomic internal states la) and Ib) are mixed by a classical 
field such that la)--4(1a)+ lb))/V2 	and 	1b)--q1a) 

A subsequent detection of these atoms in states 
la) or lb) introduces phase factors. To see this clearly, we 
take k k2= 0 for the sake of simplicity. Similar arguments 
will, however, apply for other values of k 1  and k2 . First we 
consider the passage of atoms through cavity B I  only. The 
initial state is therefore 

lifrj,.12.0,0(A1A2B1132))01atom) 

1(10A c0,4 2 ,1Bi tia,)+ei7j210,4,,IA 2,181 ,082) 

+ eivill A 
 1

,0A 2,0B1 ,1e2) 

+esMii +12)11 A1 ,1A2,081,0/32))01b). 	(15) 

The removal of a photon from B 1  followed by mixing of the 
atomic levels by the classical field yields 

lifrii.12,0,0(A I A 2B I B2 ))01atom) 

= 1[(10A1 ,0A2,0/31 ,182) 

1 
+eiri21 0A 1 JA 2,0  t0e2))0 

1
7.2-(1a) -1- 1b)) 

+(eild1 11 AI ,OA2 	,1 n2) 

1 
+el 21 	,1A2,081,082))0 -

v
-
2
-(1a)-16))]. 	(16) 

The detection of the atom in level la) gives 

Iffr• 142. 0•0(A1A,B11.32)) 

	

= .11  (10A ,On .1n  )+ es -10A  ,1 A  ,On  )+eini1 11 	0 	1 

	

2 	2 	 I 	2 	2 	A i  A 2,  Dv 

	

+ e i 77(i +  /2)11AciA2.082))eICL81)' 	
(17)  

I lifj, 42,0.0 1A 2B t B2)) 

=1(10A1,0A2,1n,)+ 	OA c l A .2,0B2) 

- e i7111 1 ,1 1 ,0A,,113,) -- e i7r(ji+j2)1 1 AcIA 2 ,082))010B,)• 

(18) 

By a similar procedure, the photon can be removed from the 
cavity B, and the resulting cavity field state will have phase 
factors according to the final nutcome of the atomic state. 
Here we summarize the .  (i pal outcome depending upon the 
sequence of atom states for the removal of photons from 
cavity B i  and cavity B,: 

la)la)---)(l0A1,0A ,)-Fe in7210A1 ,1A ,)+ei  

+ei'ij' +h)1 1 AciA))01 0 /3 ,OB,) ,  

la)10—)-1(10 AcOA,)— e i 'j210,11 ,1A ,)± einj 1 

eim11+ j 2)11
A1

,1
A2))010B 1 .082), 

16)1a)—)1(10A1 ,0A2)+ei n-j210A1 ,1A2)—ei'1111 A ,,OA2) 

_ei n(11 - 2 )11
A1 ,1A ,))01081,0112 ). 

lb)lb)--,1(10A cOA,) — e in121 0AcIA,) — e i7j11 1 Ac0A,) 

+eimi1+j2)11A1,In2))®10B1,°,92)' 	(19) 

This completes the procedure of evacuating cavities B i  and 

B,. The resulting state can have different but known phase 
factors between the constituent states. The net effect is 
equivalent to a transformation to a different basis. Next we 
make measurements in the cavities A 1  and A, in order to 

determine the phase factors j i  and 1, . For simplicity's sake. 
we assume that the first two atoms are detected in state la). 

We now remove photons from cavities A, and A, by a 
similar procedure, i.e., by sending two-level atoms in their 
ground state lb) followed again by a classical field that mixes 

	

the levels such that la)-4(1a)+16))/ 	and lb)—(la) 

— lb))/1/2: 

I tfrjo2.0.0(A I A 2 8 1 B 2)) 'atom) 

= 2(1°A)±  e i7/ 2 1 I  A )) 2 - 

X[(1 + el  ',11 )1a) — (1 — e i 7ri 1 )1012210 At .01; 	B2) . 

(20) 

If the atom is detected in la) then j i  =0, and if atom.,!:; 

detected in lb) then j 1 = I. The resulting cavity field state is 

I r/i1,.110(A 1A2B1/32)) = 
 v2
— (10A

2
)+ei'l211A 2)) 

whereas the detection of the atom in level lb) gives 
	 010A coBc08 2). 

	(21) 
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Finally, we send the atom through the cavity A, and repeat 
the same procedure. If the atom is found in state la) then 
j2 =0, and if the atom is detected in lb) then 12 = 1. So by 
making measurements only in cavities A 1  and A 2  by first 
removing one photon from cavity A i  and then removing one 
photon from cavity A 2 , detection of the atom in different 
states yields the different values of j i  and 12  as 

/2 = () 1 'kak i  ,k2(A  1A2B1B2)), 

12= 1  '1//o,i,k, ,k2(A IA2B1B2)),  

12 =f3.1010.k i  ,k,(A IA 2BIB2)),  

12= I 	1 1,b1,1,k1  ,k2(A IA2B1B2))• 

If we have other sequences of detection of the first two 
atoms, then by doing the same process detection of the atorn 
in different states gives the different values of j i  and j2  as 
shown below: 

1001010 	=0, 
 

12 = 1 1 00,1,k, 	1A2B1B2)), 

I a)!/))101b) 	1 = 0,  12 = 	S110,0,k1  ,k2(A 1 A 2B i  /32)), 

10101010-4./1'1,  12= 1 	1/1/1.1,ki.k2(A 	2.81 /32)), 

ja)11))11))10-q 1 =1, 	2 = °11/11,0,k i  ,k2(A 1A2B1B2)),  

1010010-4: II= I , 
 

12 = (:)111/1 ,0,k i  ,k2(A1A2BIB2)), 

10101010 11= I , 
 

12= I 	,k2(A IA 2BIB2)),  

10101010 )-). 11= 0, 
 

12= °11/10.0.1, .k2( A IA 281132)), 

lb)101b)lb)-qt = 0, 12= 1 	00,1.A 1  ,k 2(A IA 2B IB2)),  

Iblb)101a).-*1 t = 1,  12 = 1 	,k2(A 1A 2B1B2)),  

10101(1)10--)ii= 1,  12= () 1 	,k 2(A 1A2B1B2)),  

10101010-qt = 0,  1/=1100,1,ki ,k2(A 1 A 2B1 /32)), 

lb)lb)lb)Ib)-q i  =0, iz=v1Wo,o.k,.k2(A1/42.81132)). 

We can summarize from the above equations that if the 
order of detection of the first two atoms is the same as the 
last two, then we have j1 =0 and j,=0 and the state is 

.k2(A, 2 1 2 • I A ,B B )) If the detection of atomic states is 

the same for the first and third atom and detection of the 
fourth atom is reversed with respect to the second atom, then 

j 1 = 0 and 12  = 1 and the state is tfroj.ki .k2(A 1 A ,B 1 B,)). If 

the detection of the atomic states is the same for the second 
and fourth atom and detection of the third atom is reversed 
with respect to the first atom, then j1 = 1 and j, = 0 and the 

state is tho.ki .k ,(A /1,8 1 B 2)). If the order of detection of 

atomic states for the third and fourth atom is reversed with 

PHYSICAL REVIEW A 62 022307 

respect to the first and second atom, respectively, then j i  
=1 and j2 = I and the state is 101.1.ki ,k2(A 1 A 2B1 /32 )). 

A determination of the entangled state of the field inside 
the 	cavities A i  , A2, B 1 , and B2 , say, in state 

1 .kA A 2 ,B

ili

B

lto2 

	projects the state of the field in 

cavities 	and n 

	

C 

	

)the state lib(C i  C,)) as given by Eq. 
(11). In the final step of the teleportation, we transform this 
state into the original state (1). 

C. Transformation 

The transformation of state l tif(Ci  C2)) given by Eq. (11) 
into that given by Eq. (1) involves two steps. One is the 
removal of phases exp(irji ) and exp(iirj,) and the other is an 
appropriate transformation of photon numbers. 

First we consider the transformation of phase only. For 
the sake of simplicity, we take Ic i  =0 and k,= 0. We then 
have 

I WC C2)) = C0010 c1,0c) + Coiei  7/ 210c- 1 ,1a) 

I c ,Oc  )+ 	 lc ,lc,) 

	

2 	 I 

(22) 

(i) If j i = 0 and j2  = 0, then the state 10(A 1 A,)) is recov 
ered. 

(ii) If j i = 0 and j2 = 1, then 

It//(ClC2))=CooI0cl,Oc•,)+Ca1e'"IOc,,lc,)+ Clul I C 
1
,0C) 

+C1 	cc 	 (23) 

An atom in a superposition state [la)--)- lb)]/V2 is passed 
through the cavity C, only in such a way that the ground 
state Ib) picks the phase exp(ip7r) (p being the number of 
photons inside the cavity C,) while the excited state la) does 
not pick any additional phase. We then have 

I tAC1C2))= -(Cool0cc0c2)-Coli0c,,1c2) 

+ C1011 c1.0c2) - C1 111c,,Ic2))10) 

+ 
1/2  
-(cooloccoc2)+ codocc  I c2) 

+ C101 I c,,0c2)+Gi il I c1 ,1c))I b )• (24) 

If the atom is detected in Ib) after the passage through cavity 
C2  then the state 10(A 1 A,)) is recovered. If the atom is 
detected in stale la) then repeat the process until the atom is 
detected in lb). 

(iii) For j i  =I and j,= 0, 

1(C1 C-)) = CoolOcc0c)+ CoilOcc ic,)± COII cc0c,) 

	

I ci ,l c,). 	 (25) 
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We carry out the same process again, but this time we pass 
the atom through cavity C1  only. With the detection of the 
atom in state Ib), we recover the required state. 

(iv) For j 1 = 1 and j2 = 1, 

I Cfr( C1C2))= Cool 0cc0c2) CoiehrlOcolc2) 

+Cioe i l 1 ci3Oc2)+Citlicric2)•  (26) 

Again, the same procedure is repeated except that the atom 
passes through both cavities. As before, the detection of the 
atom in state lb) will recover the required state; otherwise, 
we repeat the process until it is detected in state lb). 

Next we consider the transformation of photon numbers 
in the cavities. As phase is removed by the method dis-
cussed above, we take j i = j 2=0 for simplicity's sake: 

(i) For k i = 0 and k2 =0, 

t/f(C1C2)) = CoolOcc0c2) + Col lOccic2)+ Ctol l c 1 ,0c2) 

+Cti ll 	>, 	 (27) 

and the original state is recovered and we do nothing further. 
(ii) For k 1 = 0 and k, = I, 

10(C IC2))= C 0010 1 ,1 c2) + C0110 c 1 ,0c2) + C 1011 1 ,1c2) 

+CH I 1 cc0c2)• 	 (28) 

In order to recover the original state (1), we should inter-
change the state between zero and one photon in cavity C2. 

For this purpose, we pass a two-level atom in its ground state 
Ib) through cavity C2 with a Tr pulse followed by its passage 
through a classical field again with a Ir pulse (Ia)—+ lb)  and 
I b)—, la)) and finally through an empty cavity C; such that 
the atom in excited state la) leaves the cavity in ground state 
Ib) while leaving one photon inside the cavity and the atom 
in ground state Ib) leaves the cavity in the ground state with 
no photon inside the cavity. This leads to the field states in 

the cavities C1  and CZ in the entangled state (1) and the 
teleportation is complete. 

(iii) For k l  = 1 and k2 =0, 

10(C1C2))= Cool lc,,0c2)+ Coil 1 cc ic2)+ CiolOcc0c2) 

+C1110ccic2)• 
	 (29) 

, We carry out the same procedure as above with the only 
difference being that the atom is passed through cavity C I . 

(iv) For k i  =1 and k2 = 1, 

10( C1 C2))= Cool I c 1 , 1 c 2)± Coil 1 c1,0c1)+ C1010 	1 c2, 

(30) 

Here we carry out the above procedure independently for the 
two cavities C 1  and C2. 

2N-bit classical information 

y(B.CN), 

FIG. 2. Quantum teleportation of the N-qubit 

state I tfr(A1A2 • • •AN))= 2,11, ,n 2  	n ,n 2 	n n I •11 2 ,  • • • •11  N) • 

IVO iC i)) are N entangled states. Cavities B, (i= 1,2 	N) be- 
long to sender while cavities Ci  (i= 1,2 	N) are with the re- 
ceiver. A 2N-bit piece of classical information transmitted from the 
sending station to the receiving station enables the receiver to re-
construct the original state. 

III. TELEPORTATION OF THE N-QUBIT FIELD STATE 

After giving a scheme to teleport the two-qubit state, we 
would like to generalize this scheme for the N-qubit state as 
shown in Fig. 2. Let us consider a N-qubit entangled field 
state in N high-Q cavities as 

o(A .-AN)>= 	c„ 
n 	n N = 	I  

We want to teleport this entangled state in A, (i 
=1,2,•••,N) high-Q cavities to Ci  (i= 1,2, 	N) high-Q 
cavities. 

In the first step of the teleportation of state (31), we need 
N pairs of entangled cavities 

1 
kb(BiCi))= 

Ifi2 
 (10)13.

'
1 1 )c

' 
 +11)810)c.), 
	(32) 

where i= 1,2, .. . ,N. These N entangled pairs of cavities can 
be prepared as mentioned earlier by passing two-level atoms 
initially in the excited state through the two resonant cavities 
and by setting a ir/2 pulse and a it pulse, respectively, in the 
two cavities. As before, cavities B (i= 1,2 ,,,,, N) are with 
the sender and cavities Ci  (i= 1,2, . 	,N) belong to re- 
ceiver. We now define 22 '̂ basis states in cavities 
A 1 A 2  ...A N B 1 82 ...B N  as 

I tfri, 	jo2 	kN(A ...A NB ...BN)) 

= 	E 	exp[i Tr(jip j p +• • •+ j N p N )] 
PI 	p,,,=o 

xlp 1) A ,IP 2) A; "IP N) A 	— 	k 1 )mod2) s, 

x 1(1 —p,—k2 )mod2)B2
x• ••x 1(1 —pN —k N )mod2) Bv  

	 In 	 
"N 

nN). 	(31) 
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H [ 	 „,e ilti"PmIPm)A 
Pi 	pN= 0 in = I 

X I ( 1 p „, — k „, ) m od2 B 	 (33) 

The combined state in the cavities A l  ...A NB ...BNC I  ...CN  
in terms of basis states can be written as 

	

iN=0  k i  ...... k N=0 p i  . 	pN=0 

PNI Wjl 	/mkt 	
 
k

iv
(A I • • •A NB' • • • BN)) 

ei'Loml(p„,+ k„,)mod2)cm. 	 (34) 

We now make measurement of the 22N  basis states of the 
A 1 ...AN B I ...BN  system. It has 2N parameters; N parameters 
correspond to the phase, while the remaining N para-
meters correspond to the photon numbers inside the 
cavities 	A 1 ,...A N ,A N ,B1 ,...,BN . 	Thus 	the 	state 
I V/j,   	k N(A 1 ...A N B 1 ... B N)) can be determined in 

two sets of measurements, the first determining k 1 ,k2  ..... k N  

via the total number of photons inside the cavities, and the 
second determining j i ,j 2 ,...,jN  via the relative phase. For 
the determination of photon numbers we use Ramsey inter-
fcrometry. We send an atom in ground state lb) through two 
cavities A 1  and B and two Ramsey zones R 1  and R2 with 
interaction time 0= ir in each cavity. The atom is resonant 
with the two Ramsey zones and off-resonant with the cavi-
ties. Detection of the atom in either the excited state la) or 
the ground state lb) makes the probable outcomes of 

Itpi l
j N  ,k l 	 N (A I • • • A NB ...B N)) to N/2 of total N val- 

ues. We then send a second atom in the ground state through 
A, and B, with the same interaction time, which reduces the 
probable outcomes by half. Similarly, we continue the pro-
cedure and send the last atom through AN  and B N . A detec-
tion of the atom in either the excited state la) or the ground 
state lb) completely determines the values of k 1 ,k2 ,...,kN  

according to the following outcomes. For example, k„ is 
equal to 1 if the outcome of the-nth atom is la), and k„ is 
zero if the outcome of the nth atom is Ib). For example, if the 
outcome of each atom is lb), except the last outcome, i.e., la), 
then the Bell state is I  VijiiN.o.o 	l (Ai ...ANB I  ...BN)). 

For the determination of phase factors j i  ,12 ,...,j N  we 
make a measurement in the cavities A 1 ,A2 ,...,AN  only after 
evacuating the cavities B1 ,B2 	B N . For this purpose we 
follow the same pr^^-A-re used earlier for the two-qubit 
state. We send N two-level atoms initially in ground state lb) 
one by one through the cavities B 1 ,82 ,...,8 N . After the 
passage through the cavity, the atomic internal states la) and 
lb) are mixed by a classical field such that a)--,(1a) 

+ lb))/1/2 and lb)--• (la) —1/2))/1/2. A subsequent detection 
of these atoms in state la) or lb) introduces phase factors 
yielding 2N  possible outcomes of atomic states. Next we 

make measurements in A 1  ,A 2 ..... A N  in order to determine 
j ,j 2 	j N  . We remove one photon from A i  by sending a 
two-level atom in its ground state lb) followed again by a 
classical field that mixes the levels such that a) —)(18) 
+ lb))/v2 and b)—(1a)— lb))/V7. Detection of the atom in 
la) or Ib) determines the value of j 1  . It is zero if the atom is 
detected in la) and one if the atom is detected in lb). We then 
repeat the process with other cavities. Finally we send the 
Nth atom in lb) from cavity A N , after mixing and detection 
of the atom in la) or lb) determines j N  . For each combination 
of the first step, while evacuating B 1 ,B2 ,...,BN , we get 2N  
combinations in the second step. Finally, we have a total of 
2 2N  different combinations. Each combination has 2N out-
comes of atomic states—N outcomes each for evacuation of 
B„ and A„ . We compare the first N outcomes of any com-
bination among the total of 2 2N  with the last N outcomes of 
the same combination. When these are the same we get j 
= 0 and when they are reversed with each other we have j 
= I. For example, if all the first N outcomes of a combination 
among 22N  combinations are similar to the last N outcomes 
of the same combination then we have all j equal to 0. How-
ever, if any nth outcome of the first N outcomes is reversed 
with respect to the nth outcome of the last N then that j„ 
= 1. If all the outcomes of the first N are reversed with all the 
outcomes of the last N of that combination then we have all 
j equal to I. This completes the procedure of measuring the 
Bell states IVj1 	iN  .k 	N (A 1 ...A N B I  ...BN)). A determi- 

nation of Bell state I  tkii 	.k 	kN(A ...A NB ...BN )) 

projects the state of the field in cavities C1  ,C, 	C N  into 
the entangled state I ///(C ...CA,)) as 

E CPI 
 PN 

YI 	PN-0 

X  fl 	k„,)mod2)(... 
m=1 

(35) 

In the third and final step of the quantum telepo::..iion, a 
manipulation of the cavities C1 , C2 	, CA/ needs to be done 
to bring state I Vt(C I C,...CN )) to form I tfr(AIA.) • • •A N))• 
This transformation of state involves two steps. One is the 
removal of phases and the other is the appropriate transfor-
mation of photon numbers. 

First we consider the transformation of phase only. It de-
pends upon the value of j. If all j are 0, then we have to do 
nothing and the original state is recovered. However, if any 
I n  among N values of j is 1 then it has an additional phase 
with it. For the removal of this phase we send a two-level 
atom in a coherent superposition of states la) and lb) through 
the cavity C„ in such a way that ground state lb) picks the 
phase. If the atom is detected in Ib) then the original state is 
recovered, otherwise we have to repeat the process until it is 
detected in lb). If there are In values of j that are equal to I 
out of N values off then we pass al atoms ill coherent super-
position of states la) and lb) one by one from those m cavities 
and detect the atoms in ground state Ib). If all the/ are I then 

X 
CPI 

X fl 
m=1 
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we pass N atoms in (la) +117))/V2 from all N cavities and 
detect atoms in ground state lb). 

Next we consider the transformation of photon numbers 
in the cavities. This transformation depends upon the values 
of k. If all the k are 0 then we have to do nothing and the 
original state is recovered. However, if any k„ among N val-
ues of k is 1, then we have to change 0 and I photon from 
cavity C„ . For this purpose we pass a two level-atom in its 
ground state lb) through cavity C„ with a 7r pulse followed 
by its passage through a classical field again with a IT pulse. 
Finally the atom passes through an empty cavity C„' such 
that the atom in excited state la) leaves the cavity in ground 
state lb) while leaving one photon inside the cavity and the 
atom in ground state Ib) leaves the cavil)/ in ground state 
with no photon inside the cavity. This leads the field states in 
the cavities C 1  ,C,,...,CN  in the entangled state (31) and the 
teleportation is complete. If there are in values of k that are 
equal to 1 out of N values then we repeat the same process as 
above by sending in two-level atoms one by one in ground 
state lb) from each in cavity and proceed further as men-
tioned earlier until the completion of the process. If all the k 
are 1 then we pass N atoms in the ground state from all N 
cavities followed by a classical field that mixes la) and Ib) as 
la)--db) and lb) +a) and finally through N empty cavities. 
The field state in the cavities C i  ,C2  ..... CN have thus been 
projected to a state that has all the information about the 
amplitudes C„1.„2 	nN. This completes the transformation 

process and hence the teleportation of the N-qubit state. 

IV. CONCLUSION 

We have presented a scheme for the quantum teleporta-
tion of a two-qubit entangled state of the form (I) from a pair 
of cavities at the sender's end to another pair of cavities at 
the receiver's end. The scheme employs atomic interaction 
with high-Q cavities. We need two entangled states of two 
particles each for the teleportation of a two-particle en-
tangled state. Sending one particle of each entangled state to  

the sender and the other particle to the receiver is sufficient 
to teleport the entangled state of two qubits. This scheme is 
then generalized for the teleportation of the N-qubit en-
tangled state in N high-Q cavities of the form (31). For 
purpose we need N entangled states of two qubits each. 
Sending one particle of each entangled state to the sending 
station and the other particle of that state to the receiving 
station is enough for the teleportation process. 

The proposed scheme of teleportation consists of three 
steps. The first step involves preparation of quantum en-
tangled states of type (2) and (3) between two high-Q cavi-
ties. The second and third steps' involve. optical Ramsey in-
terferometry and single-photon transfer. All these require 
controlled interaction times between atoms and cavities, neg-
ligible cavity loss, and no spontaneous decay during the 
whole teleportation process. Controlling the interaction time 
in the cavities can easily be achieved by properly setting, 
through Stark field adjustment, the times during which atom 
is resonant with each cavity [6]. About the spontaneous de-
cay we propose the Rydberg atom in circular states with 
principle quantum number X50. They have a long radiative 
lifetime (30 ms) and a very strong coupling to radiation [28]. 
A negligible cavity loss is also required during the whole 
process of teleportation. Cavity lifetimes for high-Q cavities 
should be long enough as all the interactions of atom with 
cavities should be completed before the cavity dissipation. 
High-quality factors of such cavities and control of atomic 
beams during the whole teleportation process may pose limi-
tations on the suggested scheme. 

ACKNOWLEDGMENTS 

One of us (M.S.Z.) would like to thank the Pakistan 
Atomic Energy Commission, Pakistan Science Foundation, 
and Quaid-i-Azam University Research Fund for financial 
support. This work is also supported by the FRG of Hong 
Kong Baptist University and the RGC of the Hong Kong 
Government. 

[I] J. S. Bell, Speakable and Unspeakable in Quantun Mechanics 
(Cambridge University Press, Cambridge, 1987); Physics 
(Long Island City, N.Y.) 1, 195 (1964). 

[2] D. M. Greenberger, M. A. Home, and A. Zeilinger, in Bell's 

Theorem, Quantum Theory, and Concepti, ms of the Universe, 
edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989), p. 
73; D. M. Greenberger, M. A. Horne, 	Shimony, and A. 
Zeilinger, Am. J. Phys. 58, 1131 (1990). 

[3] C. H. Bennett, G. Brassard, C. Crepeau, R. Joza, A. Peres, and 
W. K. Wooters, Phys. Rev. Lett. 70, 1895 (1993). 

[4] M... Brune, S. Haroche, J. M. Raimond, L Davidovich, and N. 
Zagury, Phys. Rev. A 45, 5193 (1992). 

[5] L. Davidovich, A. Malli, M. Brune, J. .1. Raimond, and S. 
Haroche, Phys. Rev. Lett. 71, 2360 (199. 1. 

[6] L. Davidovich, N. Zagury, M. Brune, J. vt. Raimond, and S. 
Haroche, Phys. Rev. A 50, 895 (199.1). 

[7] J. J. Cirac and A. S. Parkins, Phys. Rev. A 50, 4441 (1994).  

[8] H. Weinfurter, Europhys. Lett. 25, 559 (1994). 
[9] M. H. Y. Moussa, Phys. Rev. A 55, 3287 (1997). 

[10] S. B. Zheng and G. C. Guo, Phys. Lett. A 232, 171 (1997). 
[11] L. Vaidman and N. Yoran, Phys. Rev. A 59, 116 (1999). 

[12] N. Linden and S. Popescu, Phys. Rev. A 59, 137 (1999). 
[13] A. Karison and M. Bourennanc, Phys. Rev. A 58, 4394 (1998). 
[14] M. H. Y. Moussa, Phys. Rev. A 54, 4661 (1996). 
[15] M. S. Zubairy, Phys. Rev. A 58, 4368 (1998). 
[16] M. Koniroczyk, J. Janszky, and Z. Kis, Phys. Lett. A 256, 334.  

(1999). 	 A 

[17] S. Stenholm and P. J. Bardroff, Phys. Rev. A 58. 4373 (199S, 
[18] D. Bouwcmccstcr, J. W. Pan, K. Mastic, M. Eiblc. H. V 

furtcr, and A. Zeilinger, Nature (London) 390, 575 (199.  
Boschi, S. Branca, F. Dc Martini, L. Hardy, and S. Po! 
Phys. Rev. Lett. 80, 1121 (1998). 	• - - 

[19] S. Bose, P. L. Knight, M. B. Plcnio, and V. Vcdral, Phys 
Len. 83, 5158 (1999). 

r-A- 
	022307-8 



.e(JANTUM TELEPORTATION OF AN ENTANGLED STATE 
	

PHYSICAL REVIEW A 62 022307 

[20] L. Vaidman, Phys. Rev. A 49, 1473 (1994); S. L. Braunstein 
and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998). 

[21] T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668 (1998). 
[22] G. J. Milburn and S. L. Braunstein, Phys. Rev. A 60, 937 

(1999). 
[23] A. Furasawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. 

J. Kimble, and E. S. Polzik, Science 282, 706 (1998). 
[24] C. S. Maierle, D. A. Lidar, and R. A. Harris, Phys. Rev. Lett. 

81, 5928 (1998). 
[25] P. Shor, SIAM J. Comput. 26, 1484 (1997).  

[26] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997); 79, 4709 
(1997). 

[27] See, for example, M. 0. Scully and M. S. Zubairy, Quantum 
Optics (Cambridge University Press, Cambridge, 1997), Sec. 
19.3. 

[28] M. Brune, F. Schmidt-Kaley, A. Will, J. Dreyer, E. Hagley. J. 
M. Raimond, and S. Harochc, Phys. Rev. Lett. 76, 1800 
(1996); M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. MaIli. 
C. Wonderlich, J. M. Raimond, and S. Haroche, ibid. 77, 4887 
(1996). 

022307-9 


