

Mrass axamers

Prosent numbers
© - мити (7).

The alle of the projecs was to set up and toveivp the

In rooont years the thinject has assumod great fapertanee - me many posstbriltifes of ita industrial and techmological applications.
 laudion to Puefon functurs.

Unfertumataly this sumject was mot oven in ouistense th

He have introduced this shject at M.Sc. and M.MnI. Ievel. Indoed by the subuet mas mee fully fucorporated fate the tasching pregreamis of the Phystes Dopurtint. The outlimes of the ceurses are moparataly atcached.

 iserliy required to effer sthe sujeet of Masua Mystes.

 menifmarp nave propagation in a hot. cellisionlens plases censisting of clestrons and foms. Wa amoumed that the planme was mobounded ond that there

 dopendemee wns aliminated.

 corpection, There wes no restriction on the temperatume in tats case, (ti) assuntig that the Mame is mat eastremaly hot se sesat the tempersture arfeet can be treated as a mill cerroetion to the celd placme cese.

In beth sases the disparsidion relations followed the pattem of
 charge and curvent. We prosented tha rasults in a my that the eloceron and fen effects stood out saparately.

This work fown a puor which has been aceepted for publication

(b) SOLITOM AS A COMEREIT STAFE M Mems.
 soiution of nomifnear dispersive tions in which mavilinamity and difsperstan halance anch other so as to construct a comstant profila splution. swat sointions soen to play an fupertant role in may arnas of

In this regard we investigeted a ame-dimmstemel amarmanic lattien with M-marticles equally speced a Pinite length. Fer such a modol with
 difforential equatian(callad refy equ tion) tivith has a solitom solution.
 this eonmept fer antitury degrat of Monlinnarity.

This werk mas baen wiftime is Internal Ropert.

 gives the Lamdne deriplay term facorporating correstion due to the presemee of the unfform manatie ffold.

This mork is fa progress.

11.1. Hom-1Imanr Maves fa a Tro-cempenent Mot Plasma.

H.2. Solistem As a Comernent itate of Prument.

To apporp in J.Mho A. VoI. 10 7. (1977).

 Islamatedspunistam
and

HoA. Rashid
Oopartmant of Parsies. Quaid-fofzan Univeryity is imantedgmastan.

1.

IUTRODITTION

Following clemmow ${ }^{(1,2)}$, ve studv nonlinear wave propagation in a hot, collisionless nlasma consistina of niectr and lons. No assume that the nlasma is un!onnded and that there is no ambient magnetic figid. The modol user is the BnltamannVlasov equation ($B-V$ ecuations) in a Lnrentz frame of referenc S in which tho snace-denendcnce in rliminated ${ }^{(3)}$.

Te invectiaate transverfe wavna for two cascs, irine norturbation technicue: (i) When the niama in not extromoly hot so that the temnerature effect can be treator so a small correction to the cold mlama caso and the amnlitude of the wave is larae. (ii) Ther the ware amplitudr is small and that there is no reetriction on the temnerature. In hoth cases, tho dispersion relationsare shtainer and the resulte are nresenter in ? way that the dectun and ion fffecte stand out scmarately

The plan of tho namer ies Gectinn 2 nresonts a auncr formulation of the prohlem. Soctinn ? snecialises to transurs propagation and dovelon the marter equations (15) and (le). In sub-section 3.1 wicord the results for the onld plosma. The main rosults of this narer are in suh-sections 3.2 and 3.3 describing the ajenersion rnlations for strone maves (i.e. Inr amniture) with first orfre temnorature fffect and for weak w(i.c. small amilituo) with first order non-linear correction leeping temnerature arbitrarv.

We conaider S^{\prime} as the laboratory frame in which the velocity of the wave is $(n, n, c / n)$ and S the frame in which there is no snece-dependence and which is moving with velocity (0, n, ne) relative to s^{\prime} (n heine the refractive index of the medium). Alj nur calculations will he in frame s which can thon be transformen to frame G^{\prime} with the helr of a Lorenta transformation.

Dun to the shscnce of the snatial denendance of the
ficl.ds in frame s, Maxicll ecuations imnly that the mannetic ficld B is constant ane that the number densitior of electrons and ions are ecual, sav N. Furtionr, the curl ne B orvation ir roduced to

$$
\begin{equation*}
-\varepsilon_{0} \dot{\dot{E}}=\sum_{\alpha=e, j}{ }^{I}-\alpha \tag{1}
\end{equation*}
$$

We consicor the snecial case $Z=0$. Then the relativistic B-V eduations for electrons and lons will be

$$
\begin{equation*}
\frac{\partial f_{\alpha}}{\partial t}+\frac{ๆ_{\alpha}}{m_{\alpha} c} E \cdot \frac{\partial f_{\alpha}}{\partial \underline{u}_{\alpha}}=0 \tag{2.}
\end{equation*}
$$

Where \underline{u}_{ϵ} and $\underline{u}_{\mathrm{i}}$ are the recuced velocities of electrone and ions respectively, defined in terms of the ordinary velocition \underline{v}_{e} and \underline{v}_{i} by

$$
\underline{u}_{\alpha}=\frac{r_{\alpha} \underline{v}_{\alpha}}{c}, \quad r_{\alpha}=\left(1+\underline{u}_{\alpha}^{2}\right)^{\frac{1}{2}}
$$

Also $N f_{\alpha}\left(\underline{u}_{v}, t\right)$ is the distribution function. Now. using $\underline{E}=-\underline{\underline{E}}$ and defining

$$
\lambda_{\alpha}=-\frac{q_{\alpha}}{m_{\alpha} c} \quad \text { where } q_{i}=t e \text { and } q_{e}=-e
$$

the $B-V$ equation may be expressed as

$$
\begin{equation*}
\frac{\partial f_{\alpha}}{\partial t}+\lambda_{\alpha} \dot{\mathbb{A}} \cdot \frac{\partial_{\alpha}}{\partial u_{\alpha}}=0 \tag{3}
\end{equation*}
$$

These equations have a general solution

$$
\begin{equation*}
f_{\alpha}\left(\underline{u}_{\alpha}, t\right)=F_{\alpha}\left(\underline{u}_{\alpha}-\lambda_{\alpha} \underline{A}\right) \tag{1}
\end{equation*}
$$

where F_{α} is an arbitrary function of its argument; ${\underset{\sim}{-\alpha}}-\lambda_{\alpha}$ is $\frac{1}{m_{\alpha} c}$ times the renerglizec momentum. Now

$$
\begin{aligned}
J_{\alpha} & =N r_{\alpha} c \int_{\alpha}^{\frac{u}{\alpha}} e_{\alpha i}\left(\underline{u}_{-i}, t\right) d^{3} \underline{u}_{\sim i} \\
& =\frac{N c_{\alpha}^{c}}{\lambda_{\alpha}} \frac{\partial V}{\partial \underline{\lambda}}
\end{aligned}
$$

where

$$
\begin{equation*}
v_{\alpha}=\int\left[1+\left(\underline{11}_{\alpha}+\lambda_{\alpha} \underline{\lambda}\right)^{2}\right]^{\frac{1}{2}} F_{\alpha}\left(\underline{u}_{\alpha}\right) d^{3} \underline{u}_{\alpha} . \tag{5}
\end{equation*}
$$

The equation (1) may therefore be rewritten as

$$
\begin{equation*}
\ddot{\ddot{A}}+\sum_{\alpha} \frac{\omega_{\alpha}^{2}}{\lambda_{\alpha}^{2}} \frac{\partial V}{\partial \underline{A}}=0 \tag{}
\end{equation*}
$$

where

$$
\omega_{\alpha}^{2}=\frac{N q_{\alpha}^{2}}{\varepsilon_{-} m_{\alpha}}
$$

A is also a constant.. With constant A, the equation (12) under appropriate initial conditions has a solution

$$
\begin{equation*}
\Phi=\omega t ; \omega=\frac{h}{A^{2}} \tag{13}
\end{equation*}
$$

and the equation (10) reduces to the form

$$
\begin{equation*}
\frac{\partial V}{\partial A}=\frac{h^{2}}{A^{3}} \text { ox } \frac{1}{A} \frac{\partial V}{\partial A}=\omega^{2} \tag{14}
\end{equation*}
$$

There is thus in S frame a monochromatic circularly polarized field of vector potential

$$
\underline{I}=\left[A \cos (\omega t), A \sin (\omega t), \Lambda_{z}\right]
$$

and

$$
\underline{E}=A \omega[\sin (\omega t),-\cos (\omega t), 0]
$$

where A, A_{z} and w satisfy the equations

$$
\begin{align*}
& \sum_{\alpha} \frac{\omega_{\alpha}^{2}}{\lambda_{\alpha}^{2}} \frac{\partial V_{\alpha}}{\partial Z_{z}}=0 \tag{15}\\
& \sum_{\alpha} \frac{\omega}{\alpha}_{\lambda_{\alpha}^{2}}^{\lambda_{\alpha}^{2}} \frac{\partial V_{\alpha}}{\partial A}=\omega^{2} \tag{1.6}
\end{align*}
$$

Transforming the results to the laboratory frame S^{\prime} again yields a purely transverse circularly nolarized wave with velocity $(0,0, c / n)$ and ancuilar frequency ω^{\prime}. The fields in the laboraio frame s° will be

$$
\underline{E}^{\prime}=E_{\cap}^{\prime}\left\{\sin \left[\omega^{\prime}\left(\theta^{\prime}-n z^{\prime} / c\right)\right],-\cos \left[\omega^{\prime}\left(t^{\prime}-n z^{\prime} / c\right)\right], 0\right.
$$

and

$$
\underline{B}^{\prime}=\frac{n}{c} \dot{\underline{n}} \times E^{\prime}
$$

where the electric field amplitudes in S and S, are related by

$$
\begin{equation*}
\frac{E_{0}}{\omega}=\frac{E_{0}^{\prime}}{\omega^{\prime}}=A \tag{17}
\end{equation*}
$$

The dispersion relation is obtained by determining ω in term., of A from (15) and (16) and then substituting it in

$$
\begin{equation*}
\omega=\left(1-n^{2}\right)^{\frac{1}{2}} \omega^{\prime} \tag{18}
\end{equation*}
$$

3.1

Disnersion Relation in Cold plasma

The cold nlasna results can ho obtained by taking anisotropic streaming distributions, inc.

$$
\begin{equation*}
F_{\alpha}\left(\underline{u}_{\alpha}\right)=\delta\left(F_{\alpha}\right) \delta\left(\eta_{\alpha}\right) \delta\left(\zeta_{\alpha}-u_{\alpha \cap}\right) \tag{19}
\end{equation*}
$$

where

$$
\underline{u}_{\alpha}=\left(\xi_{\alpha}, \eta_{\alpha}, \zeta_{\alpha}\right)=\left(\rho_{\alpha} \cos \phi_{\alpha}, \rho_{\alpha} \cos \phi_{\alpha}, \zeta_{\alpha}\right)
$$

and $u_{\alpha o}$ is the reduced streaming velocity given by

$$
\begin{equation*}
u_{\alpha n}=\frac{v_{\alpha 0}}{c}\left(1-\frac{v_{\alpha n}^{2}}{c^{2}}\right)^{-\frac{1}{2}}=\frac{\gamma_{x 0}{ }^{\gamma} \alpha 0}{c} . \tag{21}
\end{equation*}
$$

The velocities $u_{e o}$ and $u_{i o}$ are related through the momentum conservation equation as

$$
\begin{equation*}
u_{i o}+\mu u_{e o}=u_{0} \text { (constant), } \mu=\frac{m_{e}}{m_{i}} \tag{2.2}
\end{equation*}
$$

The function V_{α} now tales a simpler form

$$
\begin{equation*}
v_{\alpha}=\left[1+\lambda_{\alpha}^{2} A^{2}+\left(u_{\alpha 0}+\lambda_{\alpha} A_{z}\right)^{2}\right]^{\frac{3}{2}} \equiv \Lambda_{\alpha} \text { (say) } \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{\lambda_{\alpha}} \frac{\partial V_{\alpha}}{\partial A_{z}}=\frac{L_{\alpha}}{\Delta_{\alpha}} \quad ; \quad L_{\alpha}=n_{\alpha 0}+\lambda_{\alpha} A_{z} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\lambda_{\alpha_{1}}^{2} A} \frac{\partial V_{\alpha}}{\partial A}=\frac{1}{\Delta_{\alpha}} \tag{25}
\end{equation*}
$$

How observing $\omega_{i}^{2}=\mu \omega_{e}^{2}$ and $\lambda_{i}=-\mu \lambda_{e}$, and using mentations (21) ant (25), the equations (15) and (15) become

$$
\begin{equation*}
\frac{L_{e}}{\Lambda_{n}}-\frac{L_{i}}{\Delta_{i}}=0 \tag{f}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\Delta_{e}}+\frac{\mu}{\Delta_{i}}=\frac{\omega^{2}}{\omega_{e}^{2}} \tag{.27}
\end{equation*}
$$

Also

$$
\begin{equation*}
L_{\alpha}=\left(1+i_{\alpha}^{2} A^{2}\right)^{\frac{1}{2}} \Omega \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=\frac{u_{0}}{\left(1+\lambda_{1}^{3} A^{2}\right)^{\frac{1}{2}}+\mu\left(1+\lambda_{0}^{2} A^{2}\right)^{\frac{1}{2}}} \tag{29}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\Delta_{\alpha} & =\left(1+\lambda_{\alpha}^{2} \Lambda^{2}+L_{\alpha}^{2}\right)^{\frac{1}{3}} \\
& =\left(1+\lambda_{\alpha}^{2} \Lambda^{2}\right)^{1!}\left(1+\Gamma^{2}\right)^{\frac{1}{2}} \tag{3n}
\end{align*}
$$

Thue the disnersion rolation (27) 'eecomes

$$
\begin{equation*}
\frac{\omega^{2}}{\omega_{e}^{2}}=\frac{1}{\left(1+\Omega^{2}\right)^{1 / 2}}\left(\frac{1}{\left(1+\lambda_{\Theta}^{2} A^{2}\right)}+\frac{\mu}{\left(1+\lambda_{i}^{2} \Lambda^{2}\right)^{1 / 2}}\right) \tag{31}
\end{equation*}
$$

Note that the innic contrihution which anmars as an adritive term can he sionifieant, penecially when the amnlitude of the wave is laree.
3.2

Disnorsion Relation in fot Dlasma
(First Order Tomnorature Corroctinn)
Unless the plasma ie fxtrrmely hot, we may use a nerturbation technime to calculate firat order tomnerature correctinn to the cold nlasma resilt of the provious section. To do that, we first transform the cartcoinn varinbles of intearation in the exprossion of v_{α} to the fxame s_{α} which is
moving with velncity $\left(\cap, n, v_{\alpha 0}\right)$ relative to , and then expant the interrand as a nower ecrics. Th firct order correction is obtained by truncatine tho scrics at the nuadratic torms.

Thre Jorentz traneformations ar

$$
\xi_{\alpha}^{\prime \prime}=\xi_{\alpha}, \eta_{\alpha}^{\prime \prime}=\eta_{\alpha}, \zeta_{\alpha}^{\prime \prime}=\gamma_{\alpha \cap}\left[\zeta_{\alpha}-\frac{v_{\alpha o}}{c} \gamma_{\alpha}\right]
$$

whrire

$$
\gamma_{\alpha 0}=\left(1-\frac{v_{\alpha 0}^{2}}{c^{2}}\right)^{-\cdots \frac{1}{k}}
$$

and

$$
\gamma_{\alpha}^{\prime \prime}=\gamma_{\alpha n}\left(r_{\alpha}-\frac{v_{\alpha 0}}{c} \zeta_{\alpha}\right)
$$

A1so

$$
A \zeta_{\alpha}=\frac{\gamma_{\alpha}}{\gamma_{\alpha}^{\prime \prime}} A \zeta_{\alpha}^{\prime \prime}
$$

Therefore

$$
\mathrm{d} \xi_{\alpha}^{\prime \prime} \mathrm{d} \eta_{\alpha}^{\prime \prime} d \zeta_{\alpha}^{\prime \prime} / \gamma_{\alpha}^{\prime \prime}=d \xi_{\alpha}{ }_{\alpha} \eta_{\alpha} / \zeta_{\alpha}
$$

Further

$$
N_{\alpha 0} F_{\alpha n}\left(\xi_{\alpha}^{\prime \prime}, \eta_{\alpha}^{\prime \prime}, \zeta_{\alpha}^{\prime \prime}\right)=N_{\alpha} F_{\alpha}\left(\xi_{\alpha}, \eta_{\alpha}, \zeta_{\alpha}\right)
$$

whore $N_{\alpha 0} F_{\alpha n}$ is the enuj.librium dirtributinn function in S_{α}^{*}. Alao note that

$$
N_{\alpha}=\gamma_{\alpha 0} N_{\alpha 0}
$$

The expression for V_{α} then becomes

$$
\begin{align*}
& v_{\alpha}=\iiint_{-\infty}^{\infty}\left\{1+\left(\xi^{\prime \prime}+\lambda_{\alpha} \lambda_{x}\right)^{2}+\left(\eta_{\alpha}^{\prime \prime}+\lambda_{\alpha} A_{y^{\prime}}\right)^{2}+\right. \\
& \left.\left[\gamma_{\alpha=}\left(\zeta_{\alpha}^{\prime \prime}+\frac{\gamma_{\alpha 0}}{c} \gamma_{\alpha}^{\prime \prime}\right)+\lambda_{\alpha} A_{z}\right]^{2}\right\}^{\frac{1}{2}} x \\
& \left(1+\frac{v_{\alpha 0} \zeta_{\alpha}^{\prime \prime}}{c r_{\alpha}^{\prime \prime}}\right){ }_{\alpha 0}\left(\xi_{\alpha}^{\prime \prime}, \eta_{\alpha}^{\prime \prime}, \zeta_{\alpha}^{\prime \prime}\right) d \xi_{\alpha}^{\prime \prime} d \eta_{\alpha}^{\prime \prime} d \zeta_{\alpha}^{\prime \prime} \tag{32}
\end{align*}
$$

Now exnarding the coefficient of $F_{\alpha n}$ in the intearanc as a nower series in $\xi_{\alpha}^{\prime \prime} \|_{\alpha}^{\prime \prime} \zeta_{\alpha}^{\prime \prime}$ and then nerforming intecration term by term, assumina $F_{\alpha 0}$ isntronic, ve ohtain

$$
\begin{equation*}
v_{\alpha}=\Lambda_{\alpha}+\frac{{ }_{\alpha}}{2 \Lambda_{\alpha}}\left(1+\alpha_{\alpha 0}\left(\gamma_{\alpha 0}+\frac{5 v_{\alpha n}}{c} L_{\alpha}\right)+\frac{1-u_{\alpha 0}^{2} L_{\alpha}^{2}}{\Lambda_{\alpha}^{2}}\right) \tag{33}
\end{equation*}
$$

where

$$
\begin{align*}
\theta_{\alpha} & =\iiint_{-\infty}^{\infty}\left(\xi_{\alpha}^{\prime \prime 2}, \eta_{\alpha}^{\prime \prime 2}, \zeta_{\alpha}^{\prime 2}\right) F_{\alpha 0} \text { dE } \alpha_{\alpha}^{\prime \prime} \eta_{\alpha}^{\prime \prime} \text { तr, } \alpha_{\alpha}^{\prime \prime} \\
& \equiv \frac{K T_{\alpha}}{m_{\alpha}^{\mathrm{C}^{2}}} \tag{31}
\end{align*}
$$

Note that we have truncated the sorier at the runciratic terms, ignorina bighne order effocte, Nlen Λ_{α} is the zoro order term, Which is the result of the cold nlasma. Further, on difforenti?t. the oquation (33) we obtaif

$$
\begin{equation*}
\frac{1}{\lambda_{\alpha}^{2} A} \frac{\partial V^{\alpha}}{\partial A}=\frac{1}{\Lambda_{\alpha}}-\frac{{ }_{\alpha} \alpha}{2 \Lambda_{\alpha}^{3}}\left(1+\gamma_{\alpha 0}\left(\gamma_{\alpha 0}+\frac{5 v_{\alpha n}}{c} L_{\alpha}\right)+\frac{3\left(1-L_{\alpha}^{2} 1^{2}{ }_{\alpha}\right)}{\Delta_{\alpha}^{2}}\right) \tag{35}
\end{equation*}
$$

$$
\begin{align*}
\frac{1}{\lambda_{\alpha}} \frac{\partial V}{\partial A_{z}} & =\frac{L_{\alpha}}{\Lambda_{\alpha}}-\frac{{ }_{\alpha}}{2 \Lambda_{\alpha}}\left(-5 u_{\alpha n}+\frac{\left(\partial \gamma_{\alpha)}^{2}+5 u_{\alpha n} L_{\alpha}-1\right) L_{\alpha}}{\Lambda_{\alpha}^{2}}\right. \\
& \left.+\frac{3\left(1-u_{\alpha \cap}^{2} L_{\alpha}^{2}\right) L_{\alpha}}{\Lambda_{\alpha}^{4}}\right) \tag{35}
\end{align*}
$$

Sincen the analyaie ic corract anl: to the linear terms in θ_{α}, it is normissihle to substituto for A_{3} in the comofficient of ${ }^{A} \alpha$ in the erurtions (35) and (35) the exnres ion aiven by cold nlama results i.e. fruntions (2?) and (30). With these annroximations, the abover eruations become

$$
\begin{align*}
& \frac{1}{\lambda_{\alpha}^{2}} \Lambda \frac{\partial V_{\alpha}}{\partial A}=\frac{J}{\Delta_{\alpha}}-D_{\alpha} \theta_{\alpha} \tag{37}\\
& \frac{1}{\lambda_{\alpha}}-\frac{\partial V}{\partial \lambda_{z}}=\frac{L_{\alpha}}{\Delta_{\alpha}}-0_{\alpha} \theta_{\alpha}
\end{align*}
$$

where

$$
\begin{align*}
& n_{\alpha}=\frac{1}{2\left(1+\lambda_{\alpha}^{2}\right.} \frac{1}{\left.\Lambda^{2}\right)\left(1+\Omega^{2}\right)^{3 / 2}}\left(5 u_{\alpha \Omega} \cap+\frac{\left(1+\gamma_{\alpha \rho}^{2}\right)\left(1+\Omega^{2}\right)-3 u_{\alpha}^{2} \Omega_{0}^{2}}{\left(1+\Omega^{2}\right)\left(I+\lambda_{0}^{2} A^{2}\right)^{1 / 2}}\right. \\
& \left.+\frac{3}{\left(1+n^{2}\right)\left(1+\lambda: \lambda^{2}\right)^{3 / 2}}\right) \tag{30}\\
& Q_{\alpha}=\frac{1}{2\left(1+\lambda_{2}^{2} A^{2}\right)^{1 / 6}\left(1+\Omega^{2}\right)^{3 / 2}}\left(-5 n_{\alpha 0}\right. \\
& \left.+\frac{\left[\left(3 \gamma_{\alpha n}^{2}-1\right)\left(1+\Omega^{2}\right)-3 n^{2} \alpha_{0}^{2} \Omega^{2}\right] \Omega}{\left(1+\Omega^{2}\right)\left(1+\lambda_{\alpha}^{2} \Lambda^{2}\right)^{\frac{1}{2}}} \frac{(\Omega}{\left(1+n^{2}\right)\left(1+\lambda_{\alpha}^{2} \Lambda^{2}\right)^{3 / 2}}\right)
\end{align*}
$$

Now substitutind the abo re eruations in (15) and (16) we obtain

$$
\begin{equation*}
\left.\frac{L_{e}}{\Lambda_{e}}=\frac{L_{i}}{\Lambda_{i}}+\partial_{e} \theta_{e}-O_{i} \theta_{i}\right) \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\Lambda_{e}}+\frac{\mu}{\Lambda_{i}}-\left(p_{e}\left(\dot{b}+\mu r_{i} A_{i}\right)=\frac{\omega^{2}}{(1)^{2}} .\right. \tag{12}
\end{equation*}
$$

The next ster i - to eliminate i_{z} sn as to obtain w in torms of the amnliture of the rave A anly. In the circumstance that: the vaves are larae amnlitnde, this is achiovert hy somaring (41), using (?3) are oontinuinc to port only to the lincar termein θ_{α}. Ater enme alonfra mo olitain

$$
\frac{1}{\Lambda_{e}}+\frac{\mu}{\Lambda_{i}}=-\frac{1}{\left(1+\frac{\Lambda^{2}}{2}\right)\left(1+\lambda_{i}^{2} \wedge^{2}\right)}{ }_{i}^{2}\left(O_{i} A_{0} \cdot n_{i} A_{i}\right)
$$

Where we have ascumer $A^{2}>1$ i.f., the rove aro =trone wavor. Using the cole nlasma arnzoseion for L_{i} or ort

$$
\begin{equation*}
\frac{1}{\Lambda_{e}}+\frac{\mu}{\Lambda_{i}}=\left(1+\lambda j \Delta^{2}\right)^{-1} \Omega\left(n_{i} \theta_{i}-n_{c} \theta_{0}\right) \tag{03}
\end{equation*}
$$

so that

$$
\begin{align*}
\frac{\omega^{2}}{\omega_{e}^{2}}= & \left(\frac{n \Omega_{i}}{\left(1+\lambda_{\epsilon}^{2} \wedge^{2}\right)^{2 / 2}} \cdot \mu p_{i}\right) \theta_{i} \\
& -\left(\frac{\Omega O_{0}}{\left(1+\lambda_{\varepsilon}^{2} 1^{2}\right.}+D_{\theta}\right) \theta_{\theta}
\end{align*}
$$

The disnersion mation in G^{\prime} is nbtainat hy using (18)

$$
n^{2}=-1-\Gamma \frac{\omega_{0}^{-2}}{\omega^{2}}\left\{\left(\frac{n_{i}}{\left(1+\lambda_{0}^{2} A^{2}\right)^{\frac{1}{n}}}-\mu D_{i}\right)^{0}{ }_{i}-\left(\frac{0_{e}^{0}}{\left(1+\lambda_{e}^{2} \lambda^{2}\right)^{\frac{1}{3}}}\right.\right.
$$

Where $\Gamma=\left(1-n^{2}\right)^{-1 / 2}$

$$
\left.\left.+\rho_{0}\right\}{ }_{\theta}\right\}
$$

From the nemrossion of Q_{α} and $\sigma_{\alpha^{\prime}}$. it $i=$ evidrat that n_{i} and P_{i} can he larco comnared to n and n romoctivoly. We may thex?fore conclude that the innic contributions can he airnificant unloss the inn-tomnoratur is nealirifly snall.

In this section we trost the amnlituce nf the wave as a smill marameter, and then use the norturbation techniaun th determine the disncesion relation inenemontint first arer non-linear correction, tut the temnerature in this canc is unrestricted. To to explicit, we ehall expane ${ }_{x}$ in nowers of A and A and then truncate the serins at trime nf nrider A^{3}. With this V_{α}, we calculate its तifforontials $\frac{\partial V \alpha}{\partial A}$ and $\frac{\partial V_{\alpha}}{\partial \pi_{z}}$ an' then substituter them in ocuations (15) and (16). That mill virirt the desired dismorsinn rolation.

For ennvenience wo uen the cylinerical noler cocreinnes $\underline{u}_{\alpha}=\left(\rho_{\alpha}\right.$ ens $\phi_{\alpha}, \rho_{\alpha}$ rin $\left.\phi_{\alpha}, \zeta_{\alpha}\right)$ and adのnt the netation

$$
\left\langle P\left(\rho_{\alpha}, \phi_{\alpha}, \zeta_{\alpha}\right)\right\rangle=\int D\left(0_{\alpha}, \phi_{\alpha}, \zeta_{\alpha}\right) F_{\alpha}\left(\underline{U}_{\alpha}\right){\underset{\beta}{ }}^{3} \underline{u}_{\alpha}
$$

$$
\begin{align*}
\frac{1}{D_{\alpha}}= & \frac{\lambda}{\gamma_{\alpha}}\left(1-\frac{1}{\gamma_{\alpha}^{2}} \lambda_{\alpha} \Lambda_{\alpha} \cos \phi_{\alpha}-\frac{1}{2 \gamma_{\alpha}^{2}}\left(\lambda_{\alpha}^{2} A^{2}+2 \lambda_{\alpha} \lambda_{z} \zeta_{\alpha}\right)\right. \\
& +\frac{3}{2 \gamma_{\alpha}^{4}} \lambda_{\alpha}^{2} A^{2} \rho_{\alpha}^{1} \cos ^{2} \phi_{\alpha}+\frac{3}{2 \gamma_{\alpha}^{4} \lambda_{\alpha}} A_{\alpha} \operatorname{cns} \phi_{\alpha}\left(2 \lambda_{\alpha} A_{z} \zeta_{\alpha}\right. \\
& \left.\left.+\lambda_{\alpha}^{2} \lambda^{2}\right)-\frac{5}{2 \gamma_{\alpha}^{6}} \lambda_{n}^{3} \Lambda^{3} \rho_{\alpha}^{3} \cos ^{3} \phi_{\alpha}\right) \tag{19}
\end{align*}
$$

where we have assumed that λ_{z} is of the order of A^{2}. This assumption is indeed true for cold nlusma, as may he seen from the equation (28) and is verified n nasterireri for the hat plasma (see oruation51).

$$
\begin{align*}
& \text { Hone, to the ort ar } A^{2} \\
& \frac{1}{\lambda_{\alpha}} \frac{\partial_{\alpha} \eta_{\alpha}}{\partial \Lambda_{z}}=<\frac{\lambda_{n} \Lambda_{z}}{\gamma_{\alpha}}+\frac{\gamma_{\alpha}}{\gamma_{\alpha}}\left(1-\frac{\lambda_{\gamma}^{2} \Lambda^{2}+2 \lambda_{\alpha} z^{\zeta} \alpha}{2 \gamma_{\alpha}^{2}}\right. \\
& \left.+\frac{3 \lambda_{\alpha}^{2} \Lambda^{2} \rho_{1}}{Y_{\alpha}^{4}}\right)> \tag{53}
\end{align*}
$$

Here wo necrose that

$$
\left\langle\frac{\zeta_{i}}{\gamma_{i}}\right\rangle=\left\langle\frac{\zeta_{e}}{\gamma_{e}}\right\rangle
$$

because from the emulation (J), it is clear that

$$
J_{C}+\left.T_{i}\right|_{\text {at } A=?}=?
$$

1.e.

$$
\int \frac{u_{0}}{\gamma_{r}} F_{C}\left(\underline{u}_{C}\right) d^{3} \underline{u}_{c}=\int \frac{\underline{u}_{i}}{\gamma_{i}} F_{i}\left(\underline{u}_{i}\right) d^{3} \underline{u}_{i}
$$

Therefore the relation (15) determince z_{z} as

$$
\lambda_{e} A_{z}=\frac{\left\langle\frac{\zeta_{G}}{2 \gamma \Omega}\left(1-\frac{3 \rho_{0}^{2}}{2 \gamma^{3}}\right)-\frac{\mu^{2} \zeta_{i}}{2 \gamma 1}\left(\lambda-\frac{30_{i}^{2}}{2 \gamma^{2}}\right)\right\rangle}{\left\langle\frac{1+\rho_{0}^{2}}{\gamma_{0}^{3}}+\mu \frac{1+D_{1}^{2}}{\gamma\}}\right\rangle} \lambda^{2} e^{A^{2}}
$$

Also to the oricer A^{2}, it is found that.

$$
\begin{align*}
\frac{1}{\lambda_{\alpha}^{2} A} \frac{\partial V}{\partial A}= & \left\langle\frac{1}{\gamma_{\alpha}}-\frac{\rho_{\alpha}^{2}}{2 \gamma_{\alpha}^{3}}-\frac{\zeta_{\alpha}}{\gamma_{\alpha}^{3}}\left(1-\frac{3 \rho_{\alpha}^{2}}{2 \gamma_{\alpha}^{2}}\right) \lambda_{\alpha} \lambda_{z}\right. \\
& \left.-\frac{1}{2 \gamma_{\alpha}^{3}}\left(1-\frac{3 \rho_{\alpha}^{2}}{\gamma_{\alpha}^{2}}+\frac{15}{8} \frac{\rho_{N}^{4}}{\gamma_{\sim}^{4}}\right) \lambda_{\alpha}^{2} A^{2}\right\rangle \tag{5}
\end{align*}
$$

Now using (51) and (52) in ermation (1r) we att

$$
\begin{equation*}
\frac{\omega^{2}}{\omega_{2}^{2}}=x_{0}-\frac{3}{2} X_{1} \lambda_{6}^{2} A^{2} \tag{5.3}
\end{equation*}
$$

phere

$$
x_{0}=\left\langle\left(\frac{1}{\gamma_{e}}-\frac{\rho_{0}^{2}}{2 \gamma_{e}^{3}}\right)+\mu\left(\frac{1}{\gamma_{i}}-\frac{\sigma_{i}^{2}}{2 \gamma_{i}^{3}}\right)\right\rangle
$$

whore

$$
\begin{aligned}
\mathrm{x}_{1}= & \frac{\left\langle\frac{\zeta_{C}}{\gamma_{C}^{3}}\left(1-\frac{3 \rho_{c}^{2}}{2 \gamma_{C}^{2}}\right)-\frac{\mu^{2} \zeta_{i}}{\gamma_{1}^{3}}\left(1-\frac{3 \rho_{i}^{2}}{2 \gamma_{i}^{2}}\right)^{2}\right.}{\left.1+\frac{\rho_{c}^{2}}{\gamma_{e}^{3}}+1-\frac{\rho_{i}^{2}}{\gamma_{1}^{3}}\right\rangle}+ \\
& \left\langle\frac{1}{\gamma_{e}^{3}}\left(1-\frac{3 \rho_{c}^{2}}{\gamma_{C}^{2}}+\frac{15}{9} \frac{\rho_{c}^{4}}{\gamma_{e}^{4}}\right)+\frac{\mu^{3}}{\gamma_{i}^{3}}\left(1-\frac{3 \rho_{i}^{2}}{\gamma_{i}^{2}}+\frac{15}{8} \frac{\rho_{i}^{4}}{\gamma_{i}^{3}}\right)\right\rangle
\end{aligned}
$$

Note that the effecte of the ionic motion stan out in the co-effici nt of μ anc? takina $\mu=0$ rives the ole results of the one-comoonent nlasma.

$$
\text { In the frame } s^{\prime} \text { the }{ }^{2} \text { isnersion relation takes tho }
$$

form:

$$
\begin{equation*}
n^{2}=1-\Gamma\left(x_{n}-\frac{1}{2} y_{1} \lambda_{2}^{2} A^{2}\right)\left(\frac{\omega^{\prime}}{\omega^{\prime}}\right)^{2} \tag{56}
\end{equation*}
$$

PEFERENCES

(1) CLEMMOM, P.C., 197^, T. Plarma Physice, 12, 207.
(2) CLEMMOM, P.C., 1975, J. Plasma Phveics, 13, 231.
(3) NTNTLFG, B, R. and EIDRIDCE, O., 1972, Phes. ilaide:

15, 1790.

CMAMNTM AMD EDTHE EXTHSTM

The tovelopmant of Mixm Myates began inth Ifnear afloction at firgt ft seee thet the ebjective of, for axamie. the theory of plasme couffmenont mas to lend for those ranges of
 the range of stability the flelds for plasme to ant grow, and the espifention of the ifmoar meproximation is festiffed. Howover. resoarch ovegteally diselicoed, at Pirst my thoory and sumsoquantly

 ss herem unstable and that the proounct of finstabilities was Its nost charmeteriatic attrituct as a state of mattep. It soou becemo clear that the monlimsse efficts mere the most inpertiont fector fir comprominaling the masical procenese in a plame.
 of mon-itmarr officets, wet muy of the woliens tevethed on ave sttll

 Using this techeipee - calle the spece independent technfoye - Clememe
 vaws in mot electron plasm (i975)。 ansuming the aboence of atblent
 comproent hot placm, assumptot the abserse of externally appifed mofent

This wart meth to be extumed furthar se es to fevestigrte the effeets the diappersice malatien of the presence of the andiont
 well phyical sftursicus.

Se fer ter mook have complned cursaives to the stumy of the trasavepse maves. Thare is thorufore, an obvious need to exteend chis wort to iongitwilian wives so at momplete the solution of the problem.

 telmmbatokxistim.

(

Recently Ichikawa et al ${ }^{(1)}$ studied the old 'recurrence problem' of Fermi, Pesta and Ulam of one-dimensional annarnonic lattice and gave an explanation emphasizing the discrete ciaracter of the system in terms of phonons, in contrast to the Jabusisy's Continuum Model. (2) In their work, the Korteveg-de Vries (IdV) ecuatiol is derived on the basis of a coherent state representation for the interacting phonons, and it is explicitly shown that a soliton solution can be given a quantum mechanical interpretation as a coherent state of excited phonons in the system. In the present note, we extend this worl to a generalized one-dimensionz? lattice with an arbitrary degree of anharmonicity n and obtain a generaiized "idy equation that describes the system. The cuantur conecnt of the onesoliton state is męintained as before. An expression for the offective mass of the soliton is also given in terms of the degree n and the coupling g_{n} of non-linearity. In this work, se shall mostly follow the notation of reference (1).

We consider a one-dimensional generalized anharmonic
lattice with N-particles equally spaced over a length $\mathrm{L}=\mathrm{H}$ (ciescribed by the Ramiltonian

$$
\begin{gather*}
H=\sum_{r=1}^{N} \frac{1}{2}\left[m \dot{y}_{r}^{2}+k\left(y_{r+1}-y_{r}\right)^{2}+\frac{1}{n} k g_{n}\left(y_{r+1}-y_{r}\right)^{n}\right]_{0} \\
(n=3,4,5, \cdots) \tag{i}
\end{gather*}
$$

Aore y_{r}, \dot{y}_{r} are the displacement and velocity of the rti? particle itin mass m, K is the linear spring constant and $g_{n}>0$ measures he strength of the non-linearity. Introducing the nomal mode xpansions

$$
\begin{align*}
& y_{r}=\frac{1}{\sqrt{N}} \sum_{k} \sqrt{\frac{k}{2 m \omega(k)}}\left(a_{-k}^{*}+a_{k}\right) e^{i k x_{r}} \tag{2}\\
& \dot{y}_{r}=\frac{i}{\sqrt{N}} \sum_{k} \sqrt{\frac{k \omega(k)}{2 r}}\left(a_{-k}^{*}-a_{k}\right) e^{i k x_{r}}
\end{align*}
$$ where $x_{r}=r l$ gives the position of the ruth particle. Now quantiziag the system in the usual way, we obtain

$$
\begin{align*}
H= & H_{0}+H^{\prime} \\
H_{0}= & \sum_{k} \hbar \omega(k)\left(a_{k^{\prime}}^{*}+1 / 2\right) \\
H^{\prime}= & \sum_{k_{1}} \Delta\left(k_{2}, \cdots, k_{n}+k_{2}+\cdots+k_{n}\right) \varphi\left(k_{1}, k_{2}, \cdots, k_{n}\right) \times \\
& x\left(a_{-k_{1}}^{*}+a_{k_{1}}\right)\left(a_{-1_{2}}^{*}+a_{k_{2}}\right) \cdots\left(a_{-k_{n}}^{*}+a_{k_{n}}\right) \tag{3}
\end{align*}
$$

where

$$
\begin{align*}
\Delta(k) & =\frac{1}{N} \sum_{r=1}^{N} e^{i r l k} \tag{4}\\
\omega^{2}(k) & =4 \frac{K}{m} \sin ^{2}\left(\frac{l k}{2}\right) \tag{5}\\
\varphi\left(k_{1}, k_{1}, \cdots, k_{n}\right) & =\frac{1}{2}\left(\frac{1}{n_{1}} K g_{n}\right)\left(\frac{k}{2 m}\right)^{r / 2} \frac{(2 i)^{n}}{(\sqrt{N})^{n-2}} \exp \left\{-\frac{i l}{2}\left(k_{1}+\cdots+k_{n}\right)\right\} x \\
x & \left\{\omega\left(k_{1}\right) \omega\left(k_{2}\right) \ldots \omega\left(k_{1}\right)\right\}^{-1 / 2} \sin \frac{l k_{1}}{2} \sin \frac{l k_{2}}{2} \ldots \sin \frac{l k_{n}}{2}
\end{align*}
$$

And

$$
\left[a_{k}, a_{k^{\prime}}^{*}\right]=\Delta\left(k-k^{\prime}\right) ;\left[a_{k}, i_{k}\right]=0=\left[a_{k}^{*}, a_{k^{\prime}}^{*}\right]
$$

Now we introduce, following Glauber (3), the coherent state of phonons $\left|\alpha_{k}\right\rangle$ defined as:

$$
\begin{aligned}
a_{k}\left|\alpha_{k}\right\rangle & =\alpha_{k}\left|\alpha_{k}\right\rangle \\
\left|\alpha_{k}\right\rangle & =\exp \left(-1 / 2\left|\alpha_{k}\right|^{2}\right) \sum_{n_{k}=0}^{\infty} \frac{\left(\alpha_{k}\right)^{n}}{\sqrt{n_{k}!}}\left|n_{k}\right\rangle
\end{aligned}
$$

with average occupation number given by a Poisson distribution ifitw mean value $\left\langle n_{k}\right\rangle=\left|\alpha_{k}\right|^{2}$. Then the expectation value of the dis?acement is given by
where

$$
\begin{aligned}
\left\langle\alpha_{k}\right| y_{r}\left|\alpha_{k}\right\rangle & =\frac{1}{\sqrt{N}} \sum_{k} y(k) e^{i k x_{r}} \\
y(k) & =\sqrt{\frac{k}{2 m \omega(k)}}\left(\alpha_{-k}^{*}+\alpha_{k}\right)
\end{aligned}
$$

Using the temporal evolution of the expectation values of the Heiwonjes creation and destruction operators with respect to a coherent state, we obtain the equation of motion for the kith mode displacement $y(=)$:

$$
\ddot{y}(k)=-\omega^{2}(k) y(k)-2 n \sqrt{\frac{\omega(k)}{2 m-k}} \cdot\left(\frac{2 m}{\hbar}\right)^{\frac{n-1}{2}} \sum_{k_{1}, \ldots, k_{n}} \varphi\left(k_{1}, \ldots, k_{n}\right) x
$$

$$
x \Delta\left(k_{1}+\cdots+k_{n}\right) \Delta\left(k+k_{1}\right) \sqrt{\omega\left(k_{1}\right) \ldots \omega\left(k_{n}\right)} y\left(k_{2}\right) \ldots y\left(k_{n}\right)
$$

If we neglect the contributions from the large wave-number phono:2s, we may approximate ϕ and ω (egns. (5) and (6)) as

$$
\begin{aligned}
\phi\left(k_{1}, \ldots, k_{n}\right)= & \frac{1}{2}\left(\frac{1}{n} k g_{n}\right)\left(\frac{k}{2 m}\right)^{n / 2} \cdot \frac{(2 i)^{n}}{(\sqrt{N})^{n-2}} \cdot \frac{l k_{1}}{2} \cdot \frac{l k_{2}}{2} \cdots \cdot \frac{l k_{n}}{2} x \\
& x\left\{\omega\left(k_{1}\right) \cdot \omega\left(k_{2}\right) \cdots \omega\left(k_{n}\right)\right\}^{-1 / 2} \\
\omega(k) & \approx \sqrt{\frac{k}{m}} l|k|\left(1-\frac{1}{24} l^{2} k^{2}\right) \\
& =s|k|\left(1-\frac{1}{24} l^{2} k^{2}\right), \text { where } s=\sqrt{\frac{k}{m}} \ell
\end{aligned}
$$

that the equation of motion (7) becomes

$$
\begin{align*}
& \ddot{y}(k)+s^{2} k^{2}\left(1-\frac{1}{12} e^{2} k^{2}\right) y(k)=\frac{1}{8} k s^{2}\left(\frac{l}{2 \sqrt{N}}\right)^{n-2}(2 i)^{n} \cdot k x \\
& x \sum_{k} \Delta\left(-k+k_{2}+\cdots+k_{n}\right) k_{2} k_{3} \ldots k_{n} y\left(k_{2}\right) \cdots y\left(k_{n}\right) \tag{3}
\end{align*}
$$

w defining a new variable $u(k, t)$ and its Fourier transform

$$
\begin{aligned}
& u(k, t)=i k y(k, t) \\
& u(x, t)=\frac{1}{\sqrt{N}} \sum_{k} u(k, t) e^{i k x}
\end{aligned}
$$

may Fourier transiorm Eqn. (8) into a non-linear cificiential nation which governs the dynamics of our generalized aminarmonic trice:

$$
\begin{array}{r}
\frac{\partial^{2}}{\partial t^{2}} u(x, t)-s^{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t)-\frac{1}{12} s^{2} e^{2} \frac{\partial^{4}}{\partial x^{4}} u(x, t)-g_{n} \frac{s^{2} e^{n-2}}{2} x \\
x \frac{\partial^{2}}{\partial x^{2}}(u(x, t))=0 \tag{9}
\end{array}
$$

is equation is a ficneralization of the Boussinesc ervation and In be converted to the lid type by using the reductive perturbation
method (4) with the following espansion and soace-tine rescaling

$$
\begin{aligned}
& u=\epsilon u^{(1)}+\epsilon^{2} u^{(2)}+ \\
& \xi=\epsilon^{\left(\frac{n-2}{2}\right)}(x-t) \\
& \tau=\epsilon^{3\left(\frac{n-2}{2}\right)} t
\end{aligned}
$$

into the form

$$
\frac{\partial}{\partial \xi}\left[\frac{\partial}{\partial \tau} u^{(1)}+\frac{1}{24} s^{2} l^{2} \frac{\partial^{3}}{\partial \xi^{3}} u^{\prime}+g_{n} \frac{s^{2} e^{n-2}}{4} \frac{\partial}{\partial \xi}\left(u^{(1)}\right)^{n-1}\right]=0
$$

(10)

- the generalized iidV equation. Hotice that ow cacosing $n=3,4$ onerecovers the standard KdV erration and its lociried form for cab:e and quartic non-linearities, re:pectively. Zeturnias to the origin.... variables, the above ecuation (00), becomes

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)+\frac{\partial}{\partial x} u(x, t)+\frac{1}{24} s^{2} e^{2} \frac{\partial^{3}}{\partial x^{3}} u(x, t)+g_{n} \frac{s^{2} e^{r-2}}{2} \frac{\partial}{\partial x}[u(x, t)]^{r-1}=0 \tag{11}
\end{equation*}
$$

The goneralized "idy ecuation acm ts one soliton zoletion winch is given by ${ }^{(3)}$

$$
\begin{equation*}
u(x, t)=\eta\left[\operatorname{sech} a_{1}\left(x-b_{n} s t\right)\right]^{\frac{2}{n-2}} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{n}^{2}=(n-2)^{2}\left(\frac{3}{n} g_{n} \eta^{n-2} e^{n-4}\right) \\
& b_{n}=\left(1+\frac{1}{2 n} g_{n} \eta^{n-2} e^{n-2}\right)
\end{aligned}
$$

It is easy to see that $n=3$ renroduces the resizts of ichikawa et ${ }_{a}{ }^{(1)}$.

Finally, it is strrig teorvard to verify jut
 statie of excited rio ons wit: amilitece α_{l} as

$$
\begin{array}{r}
a_{k}=\frac{-i}{\sqrt{N}} \int^{\frac{m \omega(k)}{2 k}}\left(1+b_{n} \frac{s k}{\omega i k}\right) 4^{1 / n-2} \cdot\left(\frac{\eta}{2 a_{n} 2 k}\right) \times \\
\quad \times e^{-i k b_{n} s t} B\left(\frac{1}{n-2}+\frac{i k}{2 a_{r}} ; \frac{1}{n-2}-\frac{i k}{2 a_{n}}\right)
\end{array}
$$

Gere the beta finaction $3(\mu, \nu)$ enteas tirroun an fovider transforn of ite one-soition solution:

$$
\begin{aligned}
u(k, t) & =\frac{\sqrt{N}}{L} \int_{-\infty}^{\infty} u(x, t) e^{-i k x} c x \\
& =\frac{4 / n-2}{\sqrt{N} 2 a_{n} l} e^{-i k b_{r} s t} E\left(\frac{1}{n+2}+\frac{i k}{2 a_{n}}, \frac{1}{n-2}-\frac{i k}{2 a_{n}}\right)
\end{aligned}
$$

 ation

$$
\begin{align*}
\underline{P} & =\sum_{k} h \underline{k}\left\langle n_{k}\right\rangle \\
& =m_{n}^{*}\left(1+\frac{\alpha_{n}}{\partial n} \eta^{n-2} l^{n-2}\right) \underline{s} \tag{14}
\end{align*}
$$

wherc n_{n} ．cefinec as the effective ass $0=32$ aniton is siven bjo

Te thani ur．S．I．N．R．Chouchany for zeefui
 the Intemational Atomic Energy and Uillos ICTF，Trieste w ere this worls vas done．

REVENETCES：

```
Yosti N. Iciliawa, Hovuo Yajima ame Favre Fatamo,
```



```
t_д& 弓ajur.
```

（2）See refercnce cuoted in（1）．
（3）K．J．Glauber，Fays．Gov．131，2766（ニ963）。

(2) selftom as colmunt stan of Monemin. (rutamal Report).

1974	Fall	dans 1975	*	411	41
1975	Sprine	2me 1975	12	9	411
107\%	Fall	deno. 1978	18	(11)	5
19\%	spring	deme 19\%6	28	6	แย1
19\%	Pall	290.0. 1977	-	mi	4
197	Speday	mot yot mald	5	-	M1
		TOTA	5	23	11

 Applications.

Hentumesmondis

 Noestrum (1950)

 Flesms Smostos. Tha Boltaman Equation for a plasuas the

(4)

 Plasums and laser putiom.

 $A_{0} M_{0}$. netorntil. (1973)

 vanit - Prana, (161)

1. Profo MoA Rashid, Prinetpal investigator.

 (Sinea Jame 877i).

 (stimes Apell. 19is).
