1. Project No:P-pU/MATHS (13)
2. Project Title: "Existance and properi

3. Name of Institution: MATHEMATICG DEPAPMMENT, Nun;a? University, New iammus, t.hn:
4. Total amount of Granl: Rs.19.750\%
5. Previous amount paid: RS. 9,875i-
6. Report period: $1-7-1982$ to $30-6 \ldots 1983$
7. Signature of Principal Jnvéstiaator:
A. H... x - 1

Prinainal fruectigneme.
只: smern Prougc!

9. Signature of the Instituion Head

REPORT

Summary

```
            3y a theorem of llanna Neumann, an amalqam of
an arbitraru collection of arours is omheraable if
and onlu if the reduced amalqam of such qrours is
embeddable. So, in order to discuss the fmbeddab,litu
of an amalgam of finite grours in a finitnaroups, w&
first consider the ombeddability of the rerlicme?
amalgam in a finite groun. The qeneral froflom has
avoided solution for the last thirtu years. In tlis
report we have investigated the embeddability of an
amalgam of three finite dihedral qrouns in a finite
group. The grouns are qiven in the form
\[
\begin{aligned}
& A=\left\langle a, b-a^{2}=\dot{r}^{2}=(a b)^{2}=1\right\rangle \\
& B=\left\langle b, c=b^{2}=c^{2}=(b c)^{m}=1\right\rangle \\
& C=\left\langle c, a=c^{2}=a^{2}=(c a)^{n}=l\right\rangle
\end{aligned}
\]
```

> The amalram A formed bu these groups is their redneod amalgam. If any two of the ℓ, m, n, say ℓ, m are equal to 2 then

$$
c=c \times b: b^{2}=1>
$$

embeds the amalgam and is finite. Here we examine the problem in more generality.

Detailed Report:

The group

$$
r-<a, b, c=a^{2}=b^{2}=c^{2}=(a b)=(b,)^{m}=(c a)^{\prime \prime}=
$$

described by coxeter and moser as the aroup of refiection in the sides of a spherical triangle with ancles $\pi /, \pi / m, \pi / n$ wassproved to be the generalised free product of the qroups

$$
\begin{aligned}
& A=\left\langle a, b: a^{2}=b^{2}=(a b)=1\right\rangle \\
& B=\left\langle b, c: b^{2}=c^{2}=(b c)^{m}=1\right\rangle \\
& C=\left\langle c, a: c^{2}=a^{2}=(c a)^{n}=1\right\rangle
\end{aligned}
$$

in () in F, is known to be finite if $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}>1$ and infinite otherwise. We can also write F as

$$
F=\left\langle a, h, c: q^{m}=h^{n}=(g h)^{\ell}=c^{2}=(a c)^{2}=(c h)^{2}=1\right\rangle
$$

It is easu to note that F is then a split extension of

$$
p=(m, n, l)=\left\langle g, h=q^{m}=h^{n}=(g h)^{\ell}=1\right\rangle
$$

by a cuclic group of order 2. P belongs to the well known family of groups called 'polyhedral groups' Which is interesting in the sense that many of the known finite simple groups are factor groups of this aroun.

We require the following definitions and concents

Let $\left\{\sigma_{\alpha}: \alpha E \Lambda\right\}$ be a collection of aroups with $f_{a} \eta_{f_{r}}$,
The amalqam of G_{a}, af $\Lambda_{\text {is an }}$ incomplete oroun whose elements are those of G_{α} with the elements of "r阝 thouqhr
of as identified in the two aroups G_{n}, Gip, o, he Λ. If there is a oroup G containing all $\epsilon_{a}, \alpha \in \Lambda$ such that in G, G_{a} and G_{p} intersect preciselu in a subgroun ${ }^{H} a B, a, B \in \Lambda$, then G is said to embed the amalgam of G_{α}. If G_{α}, aE Λ, are all finite, then the amaluam formed bu these G_{α} is sald to he a finito amalacm. If a finite group G exists which contains ail fo.. A with their correct intersections $\mu_{\alpha B}=\sigma_{\sim} \cap \sigma_{F}, \operatorname{Rr} A$, then we say that the amalqam A is embeddable in Finite group.
;
Given an amalgam \xlongequal{A} of aroup G_{α} it is, in qeneral, not true that \triangleq be embeddable in a grouf much less that it may be embeddable in a finite group It is, of course, known that amalgam of tho groups is always embeddable and, in fact, embeddable in a finite aroup, by a well known result of B.ll.Neumann (). The embeddabilitu nroblem for three or more oroups, however, is extremely difficult. Even for the case of an amalgam of three finite groups, no necessary and sufficient conditions for such an amalgam to have a finite embedding are know.

The finite amalgam considered here is an amaluam of three finite dihedral grouns given in the form

$$
\begin{aligned}
& A=\left\langle a, b=a^{2}=b^{2}=\left(a b^{p}=1\right\rangle\right. \\
& B=\left\langle b, c=b^{2}=c^{2}=(b c)^{m}=1\right\rangle \\
& C=\left\langle, a=c^{2}=a^{2}=(c a)^{n}=1\right\rangle
\end{aligned}
$$

The embeddability of this amalgam was established in｜． The finite embeddability of this amalgam is discussen in the following patagraphs．

```
Consider the finite amalqams:
```

$$
\begin{aligned}
& A \\
& =1
\end{aligned}=a m(A, B:\langle b\rangle), \quad \frac{A}{=2}=a m \quad(B, C: C\rangle
$$

and

$$
\underset{=}{A}=\operatorname{am}(C, A \quad:<a\rangle)
$$

These are three finite amalgams and are embeddable in finite qroups G_{1}, G_{2} and G_{3} respectivelu．Sinco ${ }_{1}$ ，is generated by a, h, c ，the pairs $a, b: b, c$ qenerate in, groups isomorphic to A, B and there intersection is precisely＜b＞．However the subgroup of figenerated by a, c, mau，in ceneral，be cifferent form C but is still a dihedral group．Similarlu for the aroups G． and．G_{3} ．

Let：us now consider the ordinary free oroduct：

$$
\begin{aligned}
F & =\langle a\rangle *<b\rangle *\langle c\rangle \\
& =\left\langle a, b, c: a^{2}=b^{2}=c^{2}=1\right\rangle
\end{aligned}
$$

of the cuclic qroups $\left\langle a=a^{2}=1\right\rangle,\left\langle b: b^{2}=1\right\rangle$ ， $\left\langle c: c^{2}=1>, \quad i=1,2,3\right.$.

Since each $G_{j}, i=1,2,3$ ，is also qenerated bi a，b，c： by the property of free products，all these are isomorphic to factor groups of F ．Thus there are ज口⿰习习⿱亠䒑日心 subqroups $\mathrm{N}_{1}, \mathrm{~N}_{2} \times^{N_{3}}$ such that

$$
\begin{aligned}
& N \cap<a: a^{2}=1>=\{1\} \\
& N \cap<b: b^{2}=1>=\{1\} \\
& N \cap<c: c^{2}=1>=\{1\}
\end{aligned}
$$

Since N_{1}, N_{2}, N_{3} all are normal subgroups of f and have finite index in F, N is a normal subgroup of and has finite index in F. Thus F / N a finite group.

In F / N, the groups generated by the nairs
$a N, b N ; b N, C N ; C N, a N$ are aqain dihedral qroups, say. A_{1}, B_{1}, C_{y} respectively. These may again be not isomotnh with A, B andC respectivelu. Let the orders of A, E_{7}, C respmetivelu.
$2 \mathrm{n}_{1}$ Then $\mathrm{l}_{1}, m_{1}, n_{1}$ are divisible bu. l,m and n respectively so that A, B and C are homomorpiite images of A_{1}, B_{1}, C_{1} respectivelu.

Consider now the normal closures:

$$
\begin{aligned}
& x=\left\langle f(a b)^{\ell} f^{-1} N: f \in F\right\rangle \\
& Y=\left\langle g(b c)^{m} a^{-1} N: g \varepsilon F\right\rangle \\
& z=\left\langle h(c a)^{n} h^{-1} N: h \in F\right\rangle
\end{aligned}
$$

of the cyclic groups < $\left.(a b)^{\ell} N\right\rangle,\left\langle(b c)^{m} H\right\rangle,\left\langle(c a)^{n} N\right\rangle$ in E / N respectively. Since

$$
\begin{aligned}
& \left\langle f(a b\} f^{-1}: f \in N\right\rangle \\
& \left\langle q(b c)^{m} g^{-1}: g \in F\right\rangle \\
& \left\langle h(c a)^{n} h^{-1}: h \in F\right\rangle
\end{aligned}
$$

are normal in $F ; X, Y, Z$ are normal in F / N. Let

$$
0=\langle X, Y, z\rangle
$$

be the subgroup of F / N qenerated bu X, Y and 2 . Then : is a normal subgroup of F / N. Also since N_{1}, N_{2}, N_{3} are normal in F,

$$
x \leq N_{1} \cap N_{3}, \quad Y \leq N_{2} \cap N_{2}, \quad Z \leq N_{2} \cap N
$$

so that

$$
x y x^{-1} y^{-1} \quad \varepsilon \quad N_{1} \cap N_{2}, \quad x=f(c b)^{\ell} f^{-1}, u=q(b c)^{m} q
$$

Also since $Z \subseteq N_{2} \cap N_{3}, \quad x Y \cap Z \subseteq N_{2} \cap N_{3}$. But x and Y are contained in N_{1}. As N_{1} is a subgroup, $x: N_{1}$.
 andizx Y are contained in N. Hence O is the dixect. product of X, Y, Z.

$$
\text { We claim that the factor group of } F / N \text { bu } O \text { emhede }
$$ the amalgam of A, B, C. For this we have to shon that

(i) Q contains no elements of the form

$$
a^{\varepsilon}(a b)^{i} N, b^{\delta}(b c)^{j} N, \quad c^{(1)}(c a)^{k} N
$$

$\varepsilon=0$ or $1, \delta=0$ or $1, \omega=0$ or $1,0 \leq i<\ell, 0 \leq j<m, 0 \leq k<n$
so that the factor group of F / N by o contains isomorpbic copies of A, B, C.
(ii) O contains no element of the form

$$
a^{\varepsilon}(a b)^{i} \cdot b^{\delta}(b c)^{j} N, b^{\delta}(b c)^{i} \cdot c^{(1)}(c a)^{k} N, c^{\omega}(c a)^{k} \cdot a^{\omega}(a b)^{i} N
$$

When $\varepsilon=0$, or $1, \delta=0$ or $1, \omega=0$ or $1,0 \leq j<\ell, 0 \leq j<m, 0 \leq k<n$ so that in the corresponding factor qroup, $A, B ; B, C$; and C. A have their correct intersections.

For (i) suppose that

$$
a^{\varepsilon}(a b)^{i} N \in O
$$

Then-
$a^{\varepsilon}(a b)^{i}=\prod_{\alpha=1}^{p} f_{\alpha}(a b)^{k} f_{\alpha}^{-1} \cdot \prod_{\beta=1}^{q} q_{B}(b c)^{m} q_{B}^{-1} \cdot \prod_{\gamma=1}^{r} h_{\gamma}(c a)^{n} k_{\gamma}^{n}$
generated bu a, b, c respectivelu, each eiement of f has a unique normal form and the number of factors, after reduction by cancellation or amalgamation, is uniquely determined. Hence (1) gives two representations for one and the same element of F. Consider the riqht hand side of (1). Since the left hand side of (1) does not contain any factor involving c, the right hand side of (1) also does not contain any c as a factor. Thus the product.

$$
\pi g_{B}(b c)^{m}{ }_{G}^{-1} \cdot \prod_{Y=1}^{r} h_{\gamma}(c a)^{n} h_{\gamma}^{-1}
$$

does not occur in (1). Also since $n=N \in N{ }_{1}, \Pi_{B}^{D} \cdot f_{\alpha}(a b) f_{\alpha}$ we find that the right hand side of (1) is contained in N,

Hence

$$
a^{\varepsilon}(a b)^{i} \varepsilon N_{1}
$$

But then F / N_{1} does not embed the amalgam of the groups A and B amalgamating $\left\langle b: b^{2}=1\right\rangle$, because then A collapses in F / N, a contradiction. Hence $a^{\varepsilon}(a b)^{i} N$ Q. Similarlu. $b^{\delta}(b c)^{j} N \notin 0, c^{(\omega)}(c a)^{h} N \neq 0$ and we have (1). To see that condition (ii) is satisfied, let $a^{\varepsilon}(a b)^{i} \cdot b^{\delta}(b c)^{j} N \in O$.

Then again,
$a^{\varepsilon}(a b)^{i} \cdot b^{\delta}(b c)^{j}=\prod_{\alpha=1}^{p} f_{a}(a b)^{\ell} f_{\alpha}^{-1} \cdot \prod_{B=1}^{q} g_{B}(b c)^{m}{ }_{a}^{-1} \cdot \prod_{\gamma=1}^{r} h(c a)^{n} h_{Y}^{-1} A^{\prime}$
n E N. Once more, sinde (2) qives two expression for the normal form of an element in F and the left hand side does not contain any factor of the form $(c a)^{n}$,

$$
\prod_{\gamma=1}^{r} h_{\gamma}(c a)^{n} h_{\gamma}^{-1}
$$

does not appear in (2). But then, since $X Y \quad N_{1}, N$

$$
\prod_{\alpha=1}^{p} f_{\alpha}(a b)^{\ell} f_{\alpha}^{-1} \cdot \prod_{\beta=1}^{q} g_{\beta}(b c)^{m} g_{\beta}^{-1} n
$$

is in N_{1} so that

$$
a^{\varepsilon}(a b)^{1} b^{\delta}(b c)^{j} \quad \varepsilon \quad N_{1} .
$$

But this again is impossible because F / N_{1} embeds the amalgam of A, B amalgamating $\left\langle b: b^{2}=1\right\rangle$. Thus

$$
a^{\varepsilon}(a b)^{i} \cdot b^{\delta}(b c)^{j} N \not Q
$$

Similarly for the remaining two expressions.

Consequently the factor group of F / N by Q contains isomorphic copies of A, B, C with their correct fntersections and so embeds their amalgam. Being a facto group of a finite group, this is the required finite embedding of amalgam of A, B and C.

From the above discussion one can notice how difficult the general problem of embeddability of a finite amalgam in a finite group is. We do not even how as to when an amalgam of 3 or more groups is embeddable in a group, much less its being embeddabl in a finite group. Further work on this problem is continuing.

1. Neumann, B. H.: Permutational products of groups.	
	J-Austral.Math.Soc. 1960, I, pp.299-310.

2. Neumann, B. H.: An essay on free products of groups with amalgamations. Phil.trans.Roy.Soc.(London), 1954,246(A), pp. 503-554.
3. Neumann,B.H.:, Neumann,H.: A contribution to the embedding theory of group amalgams. Proc.London Math.Soc.(3)3(1953). pp.245-256.
4.Neumann, H.: Generalised free product of groups with amalgamations. Am.J.Math.1946,70, pp.59-625.
5.Mafeed, A.: Existence Theorems for generalised free products of groups (I). Bull.Inst.polit.Iasi XIV(XVIII) (1968) 1-2,pp. 23-26.
4. Majeed, A.: Existence Theorems for generalised free products of groups (II).Bull.Polit.Iasi,XVIII $X V I I I(X X I I)(1972) 1-2, p p .39-46$.

Department of Mathematics, Punjab University,New Campus, Lahore.
A. Maycid
(A.Majeed)

Principal Investigatos. Research Project P-PU/Math/ (13)

