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Abstract 
 

In this work, we extended the work of Sheen et al., 2003 for the numerical solution of 
multi-term fractional order linear differential equations by an integral representation in the 
complex plane. The resultant integral is approximated to high order accuracy using 
quadrature. The accuracy of the method depends on the selection of optimal contour of 
integration. In the present work, linear multi-term fractional order differential equations are 
approximated for optimal contour of integration, and the results are compared with other 
methods available to demonstrate the accuracy and efficiency of the present numerical 
method. 
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INTRODUCTION 
 

In this work, we want to investigate the applicability of the proposed numerical 
scheme for the solution of linear multi-term differential equations of fractional order whose 
general form to be discussed is, 

 
         tftutuDtuDtuD  321

321  

   (1) 
 
Where υi( i=1,2,3) and 0 ˂ β2< β3< β1 are constants and the integer m is defined by m 

≥ β1> m-1, then one can specify suitable initial conditions, 
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Where the Riemann-Liouville differential operators of fractional order β > 0, is 

defined as: 
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Where the integer m is defined by m ≥ β > m-1(see [1], [2]). It is the problem 
described in (1) and (2) that shall address in the present paper. It has been shown that this 
problem has a unique solution using Laplace transform methods under some strong 
conditions (in particular, the linearity of the differential equations)[3]. In the last section of 
the paper, we discuss how the theoretical results may be applied in practical cases. In 
particular we consider the performance of existing numerical methods for solving linear 
multi-term differential equations of fractional order when the equations to be solved depend 
upon parameters that must be estimated and are subject to errors. We are aware of 
applications, from material sciences, for example, in which the order of the equation is a 
parameter estimated only to certain degree of accuracy. We investigated how to optimize 
quadrature step size for the present method in order to gain maximum accuracy with less 
computational cost. 

 
Definition:If a ( > -1) is a real number then: 
 

   
1

1



 a

a

s
atL

      (4) 
WhereR(s) > 0 
 
Lemma: 
 
For m − 1 < β ≤ m, m ∈ N, the Laplace transformation of differential operator of fractional 
order can be written as [4]: 

 
(5) 

 

 
METHOD 

 
We select a quadrature step k > 0 and an equal weight quadrature formula in our numerical 
computations. The procedure is followed as applying Laplace Transformation to equation (1) 
for β1ε (3, 4), β2ε (0, 1) and β3ε (1, 2), we get: 
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Where 

 
(7) 

 
 
And 
 

    tfLsf ˆ
       (8) 

 
Now using inverse Laplace transform to equation (6), we get 
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Where Γ is the integration contour such that rs and  vss   given by equation (13). 
Now using equation (13) in equation (9), we get, 
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Now for the quadrature rule we choose the step k >0 and for simplicity we set  jj vss  ,

 jj vss   where kjv j   for NjN  , we get 

   



N

Nj
jj

ts
N ssue

i
ktu j ˆ

2      
(11)

 
 
Now we solve the 2N+1 equations given in (12) for NjN  . 

    jjjjj sgssssu  321
321ˆ  

    (12) 
 

Contour of integration 
 

We remarked that the numerical solution  jsû  determined the approximate solution 
(11) for all 0 ˂ t. However, in practice, the accuracy of approximate solution depends on the 
selection of the contour Γ. A number of such contour available one such path is due to [5] 
given as 

 
  ivs   sin1      (13) 

In fact, when vIm  , then (13) reduces to the left branch of hyperbola, 
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Here the strip  }|Im:| rvvYr   

with r > 0 transformed into the hyperbola 
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NUMERICAL EXAMPLES 
 
We test the present method for taking a number of problems to validate our numerical method 
for accuracy and efficiency. By comparing the results of the present method with other 
methods, it is clear that the present method is very convenient and effective. 
 
Example No.1:  
 
Here we apply the present numerical method to the equation [6], [7] 
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Case2: 
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In such cases   tttu  2   is the exact solution. 
 
 
Table 1: Numerical results: at t=0.1, ω=2, θ=0.1, r=0.3431, δ=0.3812, and [t0,T] =[0.01,1] 

corresponding to case 1 of (15). 
 

N Absolute error 
5 0.0773 
15 7.2720 e-005 
30 1.8211 e-007 
50 3.3186 e-010 
70 7.9374 e-013 
90 2.3740 e-015 
100 1.8709 e-016 
120 5.6477 e-017 

 
 

Table 2: Numerical results: at t=0.1, ω=2, θ=0.1, r=0.3431, δ=0.3812, and [t0, T] 
=[0.01,1] corresponding to case 2 of (15). 

 
N Absolute error  
5 0.0773 
15 7.2720 e-005 
30 1.8211 e-007 
50 3.3186 e-010 
70 7.9368e-013 
90 2.2772e-015 
110 1.3886e-016 
120 1.2541e-016 

 
Table 1 and 2 shows the numerical results of the present method for case 1 and case 2 of 
example 1 respectively. The maximum absolute error for case 1 of example 1 obtained by[6] 
and [7] is 1.9e-006 and 9.53e-004 respectively, and the maximum absolute error for case 2 of 
example 1 obtained by[6] and [7] is 1.8e-007 and 9.80e-004 respectively. We have achieved 



- 
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better results than the results obtained by [6] and [7] of the same problem as shown in the 
table 1 and 2. 
 
Example No.2: 
 
Consider the equation [6] [8], 

       
25.234

3
2

25.0
533333333.86 ttttutuDtuD



                     (16) 

Where 
 

    000  uu  
 

In such case   3ttu    is the exact solution. 
 
 
Table 3: Numerical results: at t=0.1, ω=2, θ=0.1, r=0.3431, δ=0.3812, and [t0,T] =[0.01,1] 

corresponding to (16). 
 

N Absolute error 
5 0.1691 
15 8.3417 e-005 
30 2.8584 e-009 
50 1.6338 e-014 
70 4.3748e-016 
90 1.8626e-016 
100 1.1279e-016 
120 4.1250e-017 
158 5.6722e-019 

 
 
Table 3 shows the numerical results of the present method for example 2. The maximum 
absolute error for example 2 obtained by [6] and [8] is 3.39e-013 and 3.10e-006 respectively. We 
have achieved better results than the results obtained by[6] and [8] of the same problem as 
shown in the table 3. 
 
 

CONCLUSION 
 

From the results in the tables we have observed that the corresponding methodology is more 
efficient for approximating the solution of linear multi term differential equations of 
fractional order than other various methods. Therefore we finally conclude that by better 
selection of quadrature and contour we can improve the corresponding methodology in the 
future. 
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