PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

A Systematic Review of the Approaches for
Anti-Pattern Detection and Correction

SYEDA GHANA MUMTAZ, HUMA TAUSEEF*,
MUHAMMAD ABUZAR FAHIEM, SAIMA FARHAN

Department of Computer Science, Lahore College for Women University, Lahore Pakistan

*Corresponding author’s email: humaiftikhar@hotmail.com

Abstract

Pattern is a prominent strategy amongst the most basic and capable strategies to
enhance the outline, and subsequently upgrade the practicality and reusability of code. Anti-
pattern identification is a helpful procedure for picking up information on the outline issues of
existing systems and enhances the system's perceptions, which therefore upgrade the product
viability and development. Various reviews have been directed and many tools have been
produced to recognize anti-patterns, while just few reviews have considered the anti-pattern
correction, which has not been researched with a similar degree of anti-pattern correction. Anti-
pattern detection and correction approach combined together will be an effective approach to
handle issues that arises during software modification. This paper reviews the existing
approaches for anti-pattern detection and correction.

Keywords: Anti-patterns, Code smell, Software refactoring

INTRODUCTION

Nowadays, we are living in the age of technology, software and gadgets. With the
passage of time, technology and gadgets become outdated and their new and updated versions
become available in the market. Similarly, software also becomes obsolete to cope up with the
changing demand of market. Software needs to be updated with the passage of time by adding
new features and functionality. Software program enrichment, alteration and variation to
accommodate new demands are complicated tasks [1]. These updates are most of the time done
in a hurry by the developers to meet the demanding needs of market and users. Functionality
enhancement of existing software systems always fetches parallel decrease in the quality of
service (QoS) and an increase in difficulty of code [2], [3].

Software must be updated in such a way that there should be no change in overall
functionality. Due to shortage of time and hurry, defects are induced in the design of software
that subsequently degrades the quality of the software systems. There is a need to remove these
defects to maintain the quality of the software systems. The defects that are introduced during
the designing of code can be removed by refactoring process. Refactoring is the process in
which written code is improved in a way that the internal structure of the source code is altered

37

mailto:humaiftikhar@hotmail.com

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

without varying its external behavior [4]. Basic concept of refactoring is to change different
types of software artifacts.

Refactoring helps to enhance the quality of code by improving reusability,
maintainability and modifiability. It is essential to accumulate the proper expertise, abilities,
strategies, and equipment to completely benefit from refactoring.

Code smells are structural indicators in the code that propose the presence of a problem
in the software code [4]. Code smells make the software maintainability and understandability
hard for developers [5]. Presence of Code smells indicate that refactoring of code is needed.
Code smells are issues that occur when basic qualities of programming are affected; no error
occurs at execution time indicating that there are code sections that need removal or
improvement by refactoring [6]. Code smells do not necessarily affect the functionality of the
software but it is very important to look deeper to dig out if there is an underlying problem.
Code smells don’t give the solution of the problem but they list down the possible refactoring
techniques which can be used to solve them. Code smell detection methods are used to identify
the parts that require refactoring. There are many kinds of code smells and numerous software
refactoring techniques that are available for use. Some design solutions appear to be valuable
for the reconstruction of design in updated procedure of code but their long-term consequences
are harmful for design and quality of code. These design solutions are called anti-patterns.

Anti-patterns are common reoccurring problems of design introduced by developers in
the software projects due to lack of adequate knowledge and experience to resolve a particular
problem of design patterns. Just like code smells occurrence of anti-patterns in system
decreases the quality of systems. Anti-patterns are used to categorize the common problems
and their harmful effects, consequences and preventive measures [7]. Anti-pattern is an
industry terminology for commonly occurring mistakes in software projects [8]. Presence of
anti-patterns obstructs the maintenance process and escalates the risk of faults in the systems.
Anti-patterns have negative impact on the system as they are poor programming practices.
Anti-pattern examination is a fundamental need of any software development procedure. Prior
knowledge of anti-patterns assists proficiency to prevent them or to recuperate from them. The
structures having anti-patterns are much significantly testable. Presence of anti-patterns in any
system is a strong indicator of presence of bugs in the system design. These bugs can bring out
dubiousness of the system. It becomes incredibly critical to check such framework or system.
Anti-patterns hinder the comprehension and maintainability of software [9]. Presence of Anti-
patterns in code also increases the chances of its fault proneness [10], [11].

This paper presents an analysis of techniques and their evaluation metrics from

literature for anti-pattern detection. Open research problems in the area have also been
discussed to implicate new research horizons.

LITERATURE REVIEW

Anti-patterns need to be identified, monitored and removed to improve the
maintainability and comprehension. It is not an easy task and becomes a challenge for complex

38

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

and large systems. Literature survey is conducted to review different types of anti-patterns,
their characteristics, detection techniques and detailed comparison. All these are discussed in
detail in this section.

ANTI-PATTERNS

There are more than thirty kinds of anti-patterns identified by different researchers [4],
[8]. Only those anti-patterns have been discussed here that have tools and techniques proposed
for their detection.

Blob/God Class

Blob / God class is a class having too much responsibilities i.e. it has a lot of attributes
and methods.

Feature ENVY

Feature envy is a class that takes more interest in some other class. Such a class is
largely reliant on the ‘envied’ class. Cohesion of envied class is reduced due to the feature
envy.

Duplicate Code/Clone Code

These are classes with same code structure at multiple places in a code. Duplicate code
effects comprehensibility and maintainability of code. Duplicate code anti-pattern is difficult
to detect because different copies of same feature suffers from different changes during
evolution. If a change is desired in a duplicated feature then it has to be made with great care
at all the places in code, thus increasing the effort to change the code. These anti-patterns effect
stability and also increase fault proneness of code.

Refused Bequest
This anti-pattern occurs when the interface of superclass is not supported by the
subclass [4]. It usually is the case when the inherited class overrides too many methods of the
inherited class.
Divergent Change

This is class which is most changed out of all the classes present in the code. Each time
it is changed in multiple ways for different reason. Such classes have low cohesion.

Shotgun Surgery

This anti-pattern is present whenever a little change is desired but one has to do lot of
changes in many different classes [4]. Such anti-patterns are difficult to detect.

39

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies occur in the cases when a subclass formation of one
class leads to subclass formation of another class.

Functional Decomposition

This anti-pattern exists when inheritance and polymorphism are poorly used in a class.
Such classes use private fields and create very few methods [12].

Spaghetti Code

This anti-pattern is present when code contains complex methods without any
parameters. Classes interact using instance variables [12]. Spaghetti code is usually
encountered when procedural programming approach is adapted.

Swiss Army Knife

It is a highly complex class with lot of responsibilities. This is the case when a class has
multiple complex methods with lot of interfaces. This anti-pattern is usually confused with blob
but both are different in nature. Blobs are self-centered and work for themselves but the Swiss
army knife works for others.

Type Checking

This anti-pattern refers to the class that implements complicated conditional statements.
They affect the maintainability and understanding of the code. The resulting problems tend to
multiply over time.

CHARACTERISTICS OF ANTI-PATTERNS, THEIR IDENTIFICATION AND
EXTRACTION

Three types of characteristics are commonly used for identification of anti-patterns;
structural, lexical and historical characteristics. Structural characteristics are usually extracted
by analyzing the code. Lexical characteristics are usually extracted using Natural Language
Processing (NLP) and Information Retrieval (IR) methods. Extraction of historical
characteristics requires data mining of software repositories. The methods to extract these
characteristics are discussed in detail in this section.

Structural Characteristics Extraction

Structural characteristics can be extracted by analyzing method calls, shared variable
instances and inheritance variables. Method call analysis can be done using Call-based
Dependence between Methods (CDM) [13], Information flow-based Coupling (ICP) [14],
Message Passing Coupling (MCP) [15] and Coupling Between Object classes (CBO) [15].
CDM is the most widely used technique to extract structural characteristics from code. It

40

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

represents the coupling of methods. It has been used in different researches to identify feature
envy [16], [17], blob [18]- [20], refused bequest [21], type checking [22], divergent change
[23] and shotgun surgery [23].

Shared instance-based analysis can be implemented by finding out the structural
similarity between methods (SSM) [24] or by using lack of cohesion of methods (LCOM) [25].
Researchers have used shared instance-based analysis to detect blob [13], [26] and spaghetti
[26] anti-patterns from code. Analysis of relationships between two classes makes use of a
Boolean value to indicate the presence of inheritance between two classes. This method has
been utilized by researchers to detect parallel inheritance [27] and refused bequest [21].

Lexical Characteristics Extraction

Lexical characteristics are extracted using latent semantic indexing (LSI) [28], [29],
that looks for the textual similarity. Feature envy [16] and blob [13] have been detected using
lexical characteristics analysis.

Historical Characteristics Extraction

Different mining techniques are used to analyze software repositories for extraction of
historical characteristics. Co-changes either at the file level or method level are analyzed to
extract historical features of a code. Mining of log files is done using configuration
management tools (CMTs) [30] to analyze co-changes at file level. For analyzing co-changes
at method level a tool named Markos project [31] is used.

ANTI-PATTERN DETECTION APPROACHES

There exist many approaches for anti-pattern detection. These approaches have been
grouped into classes based on the searching techniques and characteristics used. Some of the
commonly used methods are discussed in this section.

Heuristic Based Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling
are used to determine blobs in code [25]. Example of such a detection tool is DECOR [26] that
uses rule cards to detect blobs. Another system named Marinescu [32] uses cohesion, coupling,
absolute and relative threshold to discriminate blob and clean classes.

Structural Characteristics Based Approaches

Researchers often use structural characteristics of the code to detect anti-patterns. Move
method refactoring (MMR) [16], [17] uses structural information to transfer a method to a
particular class if the method uses more features of that class. JDeodorant [22] is a tool that
uses MMR to remove feature envy from code. JDeodorant is also used to identify type checking
and blob anti-pattern [18], [20], [22]. Syntactic or structural similarity can also be found using
abstract syntax tree (AST) [33]. AST is traversed to calculate the referencing classes for each

41

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

field, so that feature envy can be identified. Many approaches have been proposed to identify
duplicate / clone code by finding out syntactic or structural similarity using AST [12], [34],
[35]. Static analysis of the source code and dynamic evaluation of unit test are used to detect
refused bequest [4], [21]. Structural properties can also be used to find out probabilities cdegree
[23] to calculate change propagation probability (DCPP). DCPP helps to identify divergent
change and shotgun surgery from code.

Historical Characteristics Based Approaches

Historical characteristics along with the structural characteristics of code are used to
identify blobs, feature envy, divergent change, shotgun surgery and parallel inheritance
hierarchies [27]. For blobs, regardless the type of change the date of change as indicated by
code history log can give useful information. For feature envy detection, researchers lookout
for a method that undergo alterations more often with an envied class on its own. Divergent
classes are detected as multiple sets of methods, each set containing all the methods that change
together but independently from methods in other classes. If a method changes with several
other methods in other classes then it is considered to be shotgun surgery anti-pattern.

Lexical Characteristics Based Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling
are used to determine blobs in code [25]. Example of such a detection tool is DECOR [26] that
uses rule cards to detect blobs. Another system named Marinescu [32] uses cohesion, coupling,
absolute and relative threshold to discriminate blob and clean classes. CCFinder [36] is a tool
that uses lexical characteristics to identify duplicate clone code. Parallel inheritance hierarchies
can be identified using lexical characteristics [4].

Mixed Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling
are used to determine blobs in code [25]. Example of such a detection tool is DECOR [26] that
uses rule cards to detect blobs, spaghetti code, swiss army knife and functional decomposition
from code. Trees and syntactic analysis are combined to detect duplicate code. DECKARD is
a tool that uses the same approach [37]. For borderline classes, while detecting blobs, rule cards
are converted to Bayesian network of metric values [19]. Researchers applied the same
approach but used signatures to determine similarity instead of rule cards for blob detection
[20]. Most of the time rules are combination of different properties like quantitative, structural
and lexical manifestations [24]. An automated anti-pattern detection approach based on
detection rules is proposed by Kessentini et al. [38]. Another anti-pattern detection approach
is proposed based on Prolog rules [39].

Goal-Question-Metric (GQM) based approach deliberately builds Bayesian Belief
Networks (BBNSs) to distinguish detection of anti-patterns in projects [19]. Oliveto et al.
proposed a technique based on numerical analysis for anti-patterns detection using B-Splines
(ABS) [20]. Logic based approach using prolog predicates is also used to detect structural and
behavioral aspects of anti-patterns by researchers [39]. Palladio architectural models are used

42

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

by Trubiani et al. for detecting and solving performance anti-patterns [40]. A metrics-based
approach is also used for the identification of the area for code improvement [41]. Detection
algorithms are also proposed from conditions using domain-specific language [26].

Automatic refactoring tools can be used to increase the quality of code [42]. Graphical
user interface (GUI) based testing technique is proposed for computerization testing [43].
Genetic programming is used to detect web service anti-patterns [44]. Support vector machines
(SVM) are also used for anti-pattern detection [45]. Process models for control-flow anti-
patterns are devised by Han et al. [46].

COMPARISON

A detailed comparison of techniques for anti-pattern detection and correction as well as
of the research work conducted by different researchers is conducted. Summarized tables of
both comparisons for anti-pattern detection and correction are given.

COMPARISON OF DIFFERENT ANTI-PATTERN DETECTION APPROACHES

A comparison of anti-pattern detection approaches to improve system code, their
advantages and limitations are given in Table 1. Different factors are considered for comparison
like refactoring approach, types of anti-patterns detected, tools used in detection process,
methodology adopted, system on which the technique is evaluated. It is obvious from the
comparison that most of the work is inclined towards automated detection and in combinational
field the major advantage of automated refactoring in anti-pattern detection is time saving mode
as compared to semi-automated or manual detection.

COMPARISON OF DIFFERENT ANTI-PATTERN CORRECTION APPROACHES

As mentioned earlier that there is very little work found in literature for correction
purpose of anti-pattern. The comparison of anti-pattern correction approaches to improve
system code, their advantages and limitations are given in Table 2. Different factors are
considered for comparison like refactoring approach, types of anti-patterns corrected, tools
used in correction process, methodology adopted, system on which the technique is evaluated.

It is evident from the comparison that new approaches are inclined towards automated

correction and in combinational field the major advantage of automated refactoring in anti-
pattern correction is time saving mode as compared to semi-automated or manual detection.

43

A Systematic Review of the Approaches

PJCIS (2017), Vol. 2, No. 2 : 37-56

Table 1: Comparison of Different Anti-pattern Detection Approaches

-
Q o 2 Z
o k& <
® : cml Eg 2 2 5 & S 2
2 =] I) 8 n = H =
5| M g o m a o S M =)
B By =} = , T = = Z
=] o =]
7 o m 2 m a8 = g 7. [2 5 <
— . . F.ecommendations
= * ..___E..:__.Ew" The project The framework AN SETVE 35 3
& | Development of s Design & provided the : S
= = : supporting guidelne in fiuture
o | automated tool to Development - businesses a chance . -
= Yes | - - : 03 ; refactoring of for design and
;| improve the source refactoring to refractor therr cod specific group of | development of
m code qualify Wmamﬁd.qﬁ thﬁﬂﬂ“mwnm_% coding issues. auftomatic refactoring
@ + Application Ty tools.
) Arcentuate on
Provide certain " Java programs articulacy and brief
. representzahion as .-
o evaluztion of an ASG or EMF formalizm of pattemn
=r, | memory utilization) -) matching solutions
: | ooty Comtr | Gt || st i
S | ASG representations Yes | - dedicated + Tmplementation | 05 supporting the Results were approaches.
o | znd rumn time : S : consistent. Fecommend quick
= Linux-based of queries using: specified usage :
4 | camyout) s file execution and an
= server v ASG visttors pro :
= | performance of v Local search easler way to
different Program ; _M_Ewm experiment with
. : echniques :
query techniques. v Rete networks queries.
¢ Create a UML .
& diag Computerization in
= | Suggesta GUI * Generated UML ”waﬁwummmwmmg
7 | primarly based conversion to XML Reduction in time and of refactoring,
testing method for v . o Fead the XML file . be nroficient by
m dentity of anti- e | Blob Eclipse e Eclipss testin - | and cost of anti- - can be proficient by
P E pattern detection digging out the key
& Eﬁﬁumﬁq_u:mr module } causes accountable
m auntomation ._“mmn_H_.m. » .Hn__m.m m._u_.m.._.m..mm.m for the ocenrrence of
* Finding Anti- anti-patterns.
patiermn

44

A Systematic Review of the Approaches

PJCIS (2017), Vol. 2, No. 2 : 37-56

. o .
R d & 2 : wm <
g0 & g8 A8 | : 26| & : ¢
i w =
4 H e b - o 0 = = a
4] - Bo 0 & o - 5
0§ |3E | s || & : .
: § | 3% gd | T : ¥+ ; : :
- & 1"
” o v
- = S A
i1 o+ Anti-pattern-
@ . detection’]
= mﬁ”m%wﬁﬂ“m Blob,- ¥Structural anti- Improvement in-
m atterns-in UML-) F "_ onal- pattern-detection the-quality-of- Approach-produced-
o, | et . v'{Behavioral-anti- design-and-code.- very-adequate-levels-
g | designswith- Neo | Decomposition- | -0 . -a = . =l iy
b existing-and-newly- Swiss-Army- vw#mﬁ..n_mﬁmnﬂoi W ou_nEm.mﬁ._umm_mb. ofrecall-and-
2 | defined uality- Huﬁmﬁ. ¥ +Semantic anti- level-and-reduction- precision o
5 o mﬁnww i patterns-detection’] in-correction-costa
_.m ’ e+ Correction:
propositions
Q s+Detection Principlef
= Bloh,- v'iMappings-metric -
= Functional- graphical-attribute] Allows the-
g | Providea: Decomposition- v iDistribution-filter- analyziz-oft The performance- Semi-automatic-
M _.,.ﬁ:m.:mmmoﬁucwmmn. Swizs-Army- VERSOS application’] enormous-sets-of inconsistency-of- detection has-sunefior-
2 | approach-for: Noz | Enife, PMD= ’ v'iMark class] 02a data-during- systems-still- Ail-for- .Hl._
& | detection-of-design- Divergent|]) vilnspect-class| progressing time-in- | needs- fec H_u.H. moﬁmﬁ
£ | anomalies.o Change, viApply- an-economical- enhancement 2 anomaly types.
.m Shotgun- relationshipfilters| mantier.2
a Surgerya v'iSave-the:
occuTenced
& o esInput-web-service- Quality-of-rule-is-
..|.__.+[—m.ﬂw_u_uhwmm.“b roach- anti-pattern: based-on the-
H to-stumbl .Eu. t- instances, | Gives-elevated- maximum number-of-
& S e e . s+Input- Web-service: | .0 o0 preciseness-and- Approach-works- | anti-patterns-detect-in-
| provider-anti- Service-related- P -310-Web-- - -
5 atterns through- ez anfi. pattemsa 4 metricsT servicesa recall values -and- | on-alimited-set-of | termsofprecision-
w anmmn. g g s+Derives-a-set-of acceptable- anti-patternsa and-recall.|
m programming detection rulesT execution time 3 “__
Q |z 1
g a

=

=

=

45

A Systematic Review of the Approaches

PJCIS (2017), Vol. 2, No. 2 : 37-56

v" Transformation
functions.
¥ Repaired program

U m M m a n 4 4
S 2 5E HE " 2 o E : 5
= =0 A3 = Q e i = =
& - o] a
: z S| iE 3 o a5 7 < -
: 8 |59 g4 | ° - °F : : g
- fad y K
4 = 7 : ?
+ Data Class
v Called predicate get
— method’s name
o
= | Propose detection v nm.ﬂﬁ Mﬁa and body Simplicity of
2 | methods by using a ch name defining Prolog . .
] logic_based ¥ Check setter method redicates that are In manual inspection
s | € parameter P ; of the code, no false
8 | approachforasetof | . 5y TIEnsfor | Colculate code ines | 06 | 2ol o deserive positives were found
patterns and anti- mer . both structural and .
4 patterns verification behavicral aspects among the automatic
a . + Blob patterns and detected anti-patterns.
g v Calculates the o
2 complexity of the ati-patiess.
class,
¥ Use predicate for
verification
» Anti-patterns filtering
algorithm
¥ Program,
_ ¥ Transformations
] - . functions Simplicity of Obtain repairs that
W_ Wﬁﬂ“ﬂmﬂ.ﬂmw N v Evaluation defining Prolog localize the correct
.M of wrone of Conditional | GeaProg + mSPR Repair ?m&_.umﬁm ready to _u.d._uommm set &. __...nmw,. involve less
% | ina nmaﬁm$ fixes No Statement anti- SPR ’ generation algorithm - describe mwdnEE anti-patterns 13 _“_m_mn.on on program
% | coming about from patterns v Program and behavioral not complete. ﬁEREnE&_.." and are
g | uro cepair v Positive and negative aspects of patterns mostly obtained more
[| Program e test cases and anti-patters. efficiently.

46

A Systematic Review of the Approaches

according to above
rules

m m m wn w :
= =} | Z 4
5]
ol E |28 EE | 4 s | gE] :
] o - b Q a =] - =
m = O & = = o ™ e g e
z N -EI- - °% : z :
o a0 :
. v K oM U
- = 2 8
o Object Orented
Metric Specification
_ v Traming dataset
= v ject-
. | Present SVM Blob MMM.H“HHMMMH Experimentatione
m Detect, a novel way F ° "_on . . SUM Classifier annot be SVM-bazed
&1 | to deal with D - i SVM can be performed on approach can
§ | detection of anfi- Yes g mno_nun ﬂnﬁ o “D mMnEmE traini 03 applied on other anti-patterns | overcome the
% | patterns | in view of nﬁﬂm mm H.. p MwE,w ¢ Hasing subsetsof systems. | detection due to limitations of
@ | amachine learnin 08e, SWISS glase . lack of manually reviousapproaches.
Bl € Army Knife v Find the optimal Yo PP
& | strategy SVML. h b 1 validated cracle.
= yper-plane
¢ Dataset Construction
» Detection of an anti-
pattern
o Merging of
Duplicate
) MHMMMM.” Mwﬂomw . predicates/rules in Detection of
b) CAPDL definition ultiole znti. Difficulty to The 4
o | client characterized e Conduct node rule multiple anti sastain orecise propose
2 | control-flow anti- Conditional ver 278 patterns requires o Hﬁ approach can detect
. | pattern Yes | statements anti- qnery Process | omly one execution | oo User-defined control-
¥ |F + Conduct block rul : flowstructure
2| identification with patterns ORCUCERIOEE T | models of preprocessing owstructures flow anti-patterns
“ VArous Process quey. and one execution ﬂwﬁr_“uowmmrhm effectively.
i | demonstrating ' ..U_H.,BE ant-pattern of RPST traversal. guages.
languages. information

PJCIS (2017), Vol. 2, No. 2 : 37-56

47

A Systematic Review of the Approaches

PJCIS (2017), Vol. 2, No. 2 : 37-56

REFRENCE

OBJECTIVE

AUTOMATIC

APPROCH

ANTI-PATTERNS
DETECTED
TOOLS

METHODOLOGY

NO. OF 5YSTEMS
EVALUATED

ADVANTAGES

LIMITATIONS

CONCLUSION

himga 2012 [43]

Introduce SMUEF,
a singular method to
oome 2cross ant-
pattems, primarily
bazed on support
vector machines,

Yaz

Blob,
Functional
Dacomposition,
Spaghett

Code and
Swrizs Army

POM,
PADL,

Object Oriantad
Metrie Spacification
+" Trainimg dataset
TD:
+" Calculate object-
orientad metrics
Tram the 5V
Clazsifier
+" Find tha
AN AT
byper-plane
¥ Dataset DDE
construction
Diataction
¥ The occowrrences
of anfi-pattern
¥ Interactive
learmmg and
practitioners’
feedback

03

Can be applied m
both intra-svetem
and mter-zystem
configurations.

Study iz not
pratentious
caza of potential
dependence of the
obtamadrasults
on the chozen
anti-pattame and
syztams,

SMUEF

Pracizion Iproves
when using
practifioners’
foedback.

Moha 2010 [25]

Adwocate DECOE
and DETEX

Mo

Blok, Funchonal
Decomposition,

Spaghett Code | -
and Swiss Ammy

Diécor method

+" Dazeription
Amalysiz

+" Specification

+" Processing

+" Dataction

+" Validation
DETEX detection
techmque of
décor

¥ Domam Analveiz

¥ Specification

¥ Alzorithm
Granaration
Diatection

01

Datection
techmque can be

generalizedto other |

smells.

The results of the
validation are
repaztable and
ralizhle.

48

A Systematic Review of the Approaches

PJCIS (2017), Vol. 2, No. 2 : 37-56

Table 2: Comparison of Different Anti-pattern Correction Approaches

e
-

. 2 | ANTL m 7

M ORJECTIVE = m PATTERNS| TOOLS METHODOLOGY | & = | ADVANTAGES LIMITATIONS | CONCLUSION

e 5 m DETECTED W (=

Py F & S =

% 4 7.

= meta-heuristics
= * purpose search-
2| Pronose mefa- based approach Sasrrh-hazed
= wm.__H“_._.mnnm based « level of design- Comprehension of approach and an
A technioue for s) Eclipse defacts _ developers to There iz no formal | Eclipse pluz-in can
i E._Enn_u_:mﬁm i P s refactoring the improve the design approach. be used to improve
T | refactoring code quality. the design quality of
- = » Implement a projects.
search-bazed
approach
w - * Build a model of .
m wmﬂﬁwﬁmﬂmﬁnm_ﬁ the source code Mﬂmﬂﬂnw MM other FCA representa
% | lattices for the No | Blob |PADL Galicia | * iPPW W 1oy | desion defectmsing | - better tradeaff
x mmprovement of kmown algorithms high coupling and between coupling and
E design defect * Contexts are fed low cohesion cohesion.
8 intoa FCA engine
=
W__ Open upthe
likelthood to . .

= Built model for I . A transformation iz
i automate the specification of UML specification Correction rules proposed for the

g detection and Tes Blob - anti patterns - can be used to may produce side e ormection of the anfi-
o correction of) overcome problems. effects.
% | Object-Oriented production rules pattemns.

& Anti-pattems
3

49

A Systematic Review of the Approaches

PJCIS (2017), Vol. 2, No. 2 : 37-56

o+

Table 3: Comparison of Combinational Approaches for Detection and Correction of Anti-patterns

+
& b 2]
U Q i = :

sl g Es| Ha | : 21 T :

I = =Ee ol = =]

(&) = Q] — : - i
m o & a s} o o o = g

= 5 B 2 5 = i 5 5 = = Z
& o = w A B o = 5 8

_ i -
The technique
= can be used in
o Heuristic method. different Might
m Propoze an Blob Find detection mles situation and Tequirs
| antomated 5 mmmp etti Comrection solutions will produce more work The best solution
& | approach for . pa Combination of refactoring good than L.
= : Yes Code, DECOR : s 04 : Y n has the minimum
% | detection and : operations. detection, 1dentify .
. - Functiomal . - e fitness value.
m comrection of Decomposition Rule extraction comection and | specify,
g | design defects F Uze genetic algorithm for recall results and adapt
@ correction. for the rules.
= detection of
anti-pattems.
Diefect detection process
- Finding code fragments
=, Applying refactoring
= ﬁ.ﬂ%m_m Blab, operafions #ﬂmﬁmﬁnﬂ_&mﬁq Show low Our study shows
= Spaghett Cormrection of maintamakality pravig recall zcore -
approach to - precision that technique
— Yes Code, ECLIPSE | defects]3] for the
m | detect and comrect : restlts on : outperforms
o e Functional Software code ; different
T | maintainability - ; : genefic DECOE.
'§ | defocts - Decomposition mﬂmwmnﬁ_uu..nm operations leorithm gystems.
nm : Values for each operation = -
Deefect detection ules

A Systematic Review of the Approaches

PJCIS (2017), Vol. 2, No. 2 : 37-56

% 2 @ o . .
B H & s o m E Z (]
n D =
= = o E o (=} 0o = = 5
A 8 | £E | 8 : 2k .- : 5
By =¥ y 4 = o
o E D = iy o : = =
I8 | EE) A ; a5 | 8 :
€ g 2 ‘
Defect Detection Approach
Specify the quality goals
Perform static program A systematic
= analysis Wmn_wE
m .) que that
= - Do Em.‘ﬁn Computation Facilitate the covers the process
= | Class slicing Detection process devel i of desizn defects
& | based correction Primary classifier evelopmen ig
= | technigque t t Desian defects telv of concrete detection as
o chnique 1o mee No - - ES1Zn Celtects accurately tools for the - knowledge base,
T | the design Design Defect Identification detection and and siven a
m specifications. Suggest changes election =
g Defact C ion A ch correction of correction
= elect Lorrection Approa design defects technique by
M Trimming the claszes usine class
Refactoring Formalization lic um
Slicing Classes =
Software Redesign
Eesult Refinement
Textual descriptions Hﬂm method
i WS
. . Mmﬁn“wwmmn Jefects It allows the maintainers to
o | Provide a —omﬁ.& Taxonomy efficient specify desizn
"_..JI_ EmEun to zpecify Specifica fion measurement defacts in terms of
= “_.wamﬁc_wﬂmﬂﬁ No)) Meta-modelling m.w_w detection i structural,
S D Modelling S e semantic, and
.m mﬁnﬁn.ﬁ Ceneration e mnﬁ".E quantifiable
< | correction Detection comparison property of
algorithms. Validation 1 Mwﬁmaﬁﬁ classes and
Correction) structural
Validation 2 relationships

among classes.

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

FUTURE DIRECTIONS

While taking anti-patterns refactoring into consideration there is a lack of detailed
correction approach to correct anti-patterns in source code to improve the quality of code and
to minimize testing efforts. An approach that can first detect and then correct the detected anti-
patterns for minimizing testing efforts will be very helpful. With the help of automated
correction approach developers can modify the project very easily while keeping testing efforts
low and service quality of system high. The continuous involvement of developer is
compulsory for source code related projects. Therefore, if correction approach is used to
manage anti-patterns in source code it will be a remarkable contribution.

Linguistic anti-patterns [55] are attracting many researchers nowadays. Inappropriate
or missing comments, ambiguous selection of identifiers and poorly used coding standards
increase the risk of presence of anti-patterns in code [56]-[61]. Design patters focus on
reoccurring problems of code while linguistic anti-patterns emphasize on symptoms and their
consequences.

Most of the identification systems rely on the static analysis of code. There is a need to
dynamically analyze the behavior of code and extract the characteristics accordingly. Historical
characteristics should also be incorporated with structural characteristics to improve precision
of the identification systems.

CONCLUSION

With the rapidly moving technology market, the software also needs to evolve day by
day to meet the changing market and user needs. Several approaches are proposed for anti-
pattern detection at different levels of software lifecycle. There is a need of an automated anti-
pattern correction approach that can help the developers in developing and modifying software.

REFERENCES

[1] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to evaluate software
system maintainability,” Computer, vol. 27, no. 8, pp. 44-49, Aug. 1994.

[2] A. Garrido, G. Rossi, and D. Distante, “Refactoring for usability in web applications,”
IEEE Softw., vol. 28, no. 3, pp. 60-67, 2011.

[3] [Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class library migration,” in
ACM SIGPLAN Notices, 2005, vol. 40, no. 10, pp. 265-279.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the
design of existing code. Addison-Wesley Professional, 1999.

[5] J. Padilha, J. Pereira, E. Figueiredo, J. Almeida, A. Garcia, and C. Sant’Anna, “On the
effectiveness of concern metrics to detect code smells: an empirical study,” in Int.
Conf. Advanced Information Systems Engineering, 2014, pp. 656-671.

52

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Fields, S. Harvie, M. Fowler, and K. Beck, Refactoring: Ruby Edition. Pearson
Education, 2009.

M. H. Dodani, “Patterns of Anti-Patterns” J. Object Technol., vol. 5, no. 6, pp. 29-33,
2006.

W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns:
refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.,
1998.

M. M. Lehman, “On understanding laws, evolution, and conservation in the large-
program life cycle,” J. Syst. Softw., vol. 1, pp. 213-221, 1979.

F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study of
the impact of antipatterns on class change-and fault-proneness,” Empir. Softw. Eng.,
vol. 17, no. 3, pp. 243-275, 2012.

W. Li and R. Shatnawi, “An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution,” J. Syst. Softw., vol.
80, no. 7, pp. 1120-1128, 2007.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using
abstract syntax trees,” in Proc. Int. Conf. Software Maintenance, 1998, pp. 368-377.

G. Bavota, A. De Lucia, and R. Oliveto, “Identifying extract class refactoring
opportunities using structural and semantic cohesion measures,” J. Syst. Softw., vol.
84, no. 3, pp. 397414, 2011.

Y. Lee, B. S. Liang, S. F. Wu, and F. J. Wang, “Measuring the coupling and cohesion
of an object-oriented program based on information flow,” in Proc. Intl. Conf,
Software Quality, 1995, pp. 81-90.

W. Li and S. Henry, “Maintenance metrics for the object oriented paradigm,” in Proc.
First Int. Symp. Software Metrics, 1993, pp. 52-60.

G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “Methodbook:
Recommending move method refactorings via relational topic models,” IEEE Trans.
Softw. Eng., vol. 40, no. 7, pp. 671-694, 2014.

N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring
opportunities,” IEEE Trans. Softw. Eng., vol. 35, no. 3, pp. 347-367, 2009.

M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Identification and
application of extract class refactorings in object-oriented systems,” J. Syst. Softw.,
vol. 85, no. 10, pp. 2241-2260, 2012.

F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian approach for
the detection of code and design smells,” in 9th Int. Conf. Quality Software (OSIC’09),
2009, pp. 305-314.

R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Numerical signatures of
antipatterns: An approach based on b-splines,” in 14th European Conf. Software
Maintenance and Reengineering (CSMR 2010), 2010, pp. 248-251.

53

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Y geionomakis, “Identification of
refused bequest code smells,” in IEEE Int. Conf. Software Maintenance, 2013, pp.
392-395.

N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant: Identification and
removal of type-checking bad smells,” in 12th European Conf. Software Maintenance
and Reengineering (CSMR 2008), pp. 329-331.

A. A. Rao and K. N. Reddy, “Detecting bad smells in object-oriented design using
design change propagation probability matrix,” in Int. Multi Conf. of Engineers and
Computer Scientists, 2008, vol. I, pp. 1001-1007.

G. Gui and P. D. Scott, “Coupling and cohesion measures for evaluation of component
reusability,” in Proc. 2006 Int. Workshop Mining Software Repositories, 2006, pp. 18—
21.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented design,”
IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476-493, 1994,

N. Moha, Y.-G. Gueheneuc, A.-F. Duchien, and Others, “Decor: A method for the
specification and detection of code and design smells,” IEEE Trans. Softw. Eng., vol.
36, no. 1, pp. 20-36, 2010.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk,
“Detecting bad smells in source code using change history information,” in Proc. 28th
IEEE/ACM Int. Conf. Automated Software Engineering, 2013, pp. 268-278.

A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual cohesion of classes
for fault prediction in object-oriented systems,” IEEE Trans. Softw. Eng., vol. 34, no.
2, pp. 287-300, 2008.

D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyiméthy, “Using information retrieval-
based coupling measures for impact analysis,” Empir. Softw. Eng., vol. 14, no. 1, pp.
5-32, 20009.

A. Leon, Software configuration management handbook. Artech House, 2015.

A. Laskowska, J. G. Cruz, 1. Kedziora Pawetand Lener, B. Lewandowski, C. Mazurek,
and M. Di Penta, “Best practices for validating research software prototypes-
MARKOS case study,” in Conf. eChallenges (e-2014), 2014, pp. 1-9.

R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,”
in Proc. 20th IEEE Int. Conf. Software Maintenance, 2004, pp. 350-359.

C. De Roover, T. D’Hondt, J. Brichau, C. Noguera, and L. Duchien, “Behavioral
similarity matching using concrete source code templates in logic queries,” in Proc.
2007 ACM SIGPLAN Symp. Partial evaluation and semantics-based program
manipulation, 2007, pp. 92-101.

I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS®: Program transformations for
practical scalable software evolution,” in Proc. 26" Int. Conf. Software Engineering,
2004, pp. 625-634.

54

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection in source code by
frequent itemset techniques,” in Fourth IEEE Int. Workshop on Source Code Analysis
and Manipulation, 2004, pp. 128-135.

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic token-based
code clone detection system for large scale source code,” IEEE Trans. Softw. Eng.,
vol. 28, no. 7, pp. 654-670, 2002.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-
based detection of code clones,” in Proc. 29" Int. Conf Software Engineering, 2007,
pp. 96-105.

M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design
defects detection and correction by example,” in 19th IEEE Int. Conf. Program
Comprehension, 2011, pp. 81-90.

A. Stoianov and I. Sora, “Detecting patterns and antipatterns in software using Prolog
rules,” in Int. Joint Conf. Computational Cybernetics and Technical Informatics
(ICCC-CONTI 2010), 2010, pp. 253-258.

C. Trubiani and A. Koziolek, “Detection and solution of software performance
antipatterns in palladio architectural models,” in ACM SIGSOFT Software Engineering
Notes, 2011, vol. 36, no. 5, pp. 19-30.

K. Dhambri, H. Sahraoui, and P. Poulin, “Visual detection of design anomalies,” in
Proc. European Conf. Software Maintenance and Reengineering, CSMR, 2008, pp.
279-283.

G. Szoke, C. Nagy, R. Ferenc, and T. Gyimothy, “Designing and developing
automated refactoring transformations: An experience report,” in IEEE 23" Int. Conf.
Software Analysis, Evolution, and Reengineering (SANER 2016), 2016, vol. 1, pp.
693-697.

H. Kaur and P. J. Kaur, “A GUI based unit testing technique for antipattern
identification,” in 5th Int. Conf.-The Next Generation Information Technology Summit
(Confluence), 2014, pp. 779-782.

A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintainability defects
detection and correction: A multi-objective approach,” Autom. Softw. Eng., vol. 20, no.
1, pp. 47-79, 2013.

A. Maiga et al., “Support vector machines for anti-pattern detection,” in Proc. 27th
IEEE/ACM Int. Conf. Automated Software Engineering (ASE), 2012, pp. 278-281.

Z. Han, P. Gong, L. Zhang, J. Ling, and W. Huang, “Definition and detection of
control-flow anti-patterns in process models,” in IEEE 37th Annu Computer Software
and Applications Conf. Workshops (COMPSACW), 2013, pp. 433-438.

Z. Ujhelyi et al., “Anti-pattern detection with model queries: A comparison of
approaches,” in IEEE Conf. Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week, 2014, pp. 293-302.

R. Fourati, N. Bouassida, and H. Ben Abdallah, “A metric-based approach for anti-

55

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

pattern detection in UML designs,” in Computer and Information Science 2011,
Springer, 2011, pp. 17-33.

S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-patterns in search-
based program repair,” in Proc. 24" ACM SIGSOFT Int. Symposium Foundations of
Software Engineering, 2016, pp. 727-738.

R. Morales, “Towards a framework for automatic correction of anti-patterns,” in IEEE
22" Int. Conf. Software Analysis, Evolution and Reengineering (SANER), 2015, pp.
603-604.

N. Moha, J. Rezgui, Y.-G. Guéhéneuc, P. Valtchev, and G. El Boussaidi, “Using FCA
to suggest refactoring to correct design defects,” in Concept Lattices and Their
Applications, Springer, 2008, pp. 269-275.

M. T. Llano and R. Pooley, “UML specification and correction of object-oriented anti-
patterns,” in Fourth Int. Conf. Software Engineering Advances, 2009, pp. 39-44.

D. K. Saini, L. A. Hadimani, and N. Gupta, “Software testing approach for detection
and correction of design defects in object-oriented software,” J. Comput., vol. 3, no. 4,
2011.

N. Moha, “Detection and correction of design defects in object-oriented designs,” in
Companion to the 22" ACM SIGPLAN Conf. Object-oriented Programming Systems
and Applications Companion, 2007, pp. 949-950.

V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, “A new family of
software anti-patterns: Linguistic anti-patterns,” in 17™" European Conf. Software
Maintenance and Reengineering (CSMR 2013), 2013, pp. 187-196.

Caprile and Tonella, “Restructuring program identifier names,” in Proc. Int. Conf.
Software Maintenance ICSM-94, 2000, pp. 97-107.

F. Deisenbock and M. Pizka, “Concise and consistent naming,” in 13" Int. Workshop
on Program Comprehension (IWPC’05), 2005, pp. 97-106.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier names for
comprehension and memory,” Innov. Syst. Softw. Eng., vol. 3, no. 4, pp. 303-318,
2007.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a study of
identifiers,” in 14th IEEE Int. Conf. Program Comprehension (ICPC), 2006, pp. 3-12.

E. Merlo, I. McAdam, and R. De Mori, “Feed-forward and recurrent neural networks
for source code informal information analysis,” J. Softw. Maint. Evol. Res. Pract., vol.
15, no. 4, pp. 205-244, 2003.

S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Modeling the evolution of
topics in source code histories,” in Proc. 8" Working Conf. Mining Software
Repositories, 2011, pp. 173-182.

56

