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Abstract

Pattern is a prominent strategy amongst the most basic and capable strategies to
enhance the outline, and subsequently upgrade the practicality and reusability of code. Anti-
pattern identification is a helpful procedure for picking up information on the outline issues of
existing systems and enhances the system's perceptions, which therefore upgrade the product
viability and development. Various reviews have been directed and many tools have been
produced to recognize anti-patterns, while just few reviews have considered the anti-pattern
correction, which has not been researched with a similar degree of anti-pattern correction. Anti-
pattern detection and correction approach combined together will be an effective approach to
handle issues that arises during software modification. This paper reviews the existing
approaches for anti-pattern detection and correction.
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INTRODUCTION

Nowadays, we are living in the age of technology, software and gadgets. With the
passage of time, technology and gadgets become outdated and their new and updated versions
become available in the market. Similarly, software also becomes obsolete to cope up with the
changing demand of market. Software needs to be updated with the passage of time by adding
new features and functionality. Software program enrichment, alteration and variation to
accommodate new demands are complicated tasks [1]. These updates are most of the time done
in a hurry by the developers to meet the demanding needs of market and users. Functionality
enhancement of existing software systems always fetches parallel decrease in the quality of
service (QoS) and an increase in difficulty of code [2], [3].

Software must be updated in such a way that there should be no change in overall
functionality. Due to shortage of time and hurry, defects are induced in the design of software
that subsequently degrades the quality of the software systems. There is a need to remove these
defects to maintain the quality of the software systems. The defects that are introduced during
the designing of code can be removed by refactoring process. Refactoring is the process in
which written code is improved in a way that the internal structure of the source code is altered
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without varying its external behavior [4]. Basic concept of refactoring is to change different
types of software artifacts.

Refactoring helps to enhance the quality of code by improving reusability,
maintainability and modifiability. It is essential to accumulate the proper expertise, abilities,
strategies, and equipment to completely benefit from refactoring.

Code smells are structural indicators in the code that propose the presence of a problem
in the software code [4]. Code smells make the software maintainability and understandability
hard for developers [5]. Presence of Code smells indicate that refactoring of code is needed.
Code smells are issues that occur when basic qualities of programming are affected; no error
occurs at execution time indicating that there are code sections that need removal or
improvement by refactoring [6]. Code smells do not necessarily affect the functionality of the
software but it is very important to look deeper to dig out if there is an underlying problem.
Code smells don’t give the solution of the problem but they list down the possible refactoring
techniques which can be used to solve them. Code smell detection methods are used to identify
the parts that require refactoring. There are many kinds of code smells and numerous software
refactoring techniques that are available for use. Some design solutions appear to be valuable
for the reconstruction of design in updated procedure of code but their long-term consequences
are harmful for design and quality of code. These design solutions are called anti-patterns.

Anti-patterns are common reoccurring problems of design introduced by developers in
the software projects due to lack of adequate knowledge and experience to resolve a particular
problem of design patterns. Just like code smells occurrence of anti-patterns in system
decreases the quality of systems. Anti-patterns are used to categorize the common problems
and their harmful effects, consequences and preventive measures [7]. Anti-pattern is an
industry terminology for commonly occurring mistakes in software projects [8]. Presence of
anti-patterns obstructs the maintenance process and escalates the risk of faults in the systems.
Anti-patterns have negative impact on the system as they are poor programming practices.
Anti-pattern examination is a fundamental need of any software development procedure. Prior
knowledge of anti-patterns assists proficiency to prevent them or to recuperate from them. The
structures having anti-patterns are much significantly testable. Presence of anti-patterns in any
system is a strong indicator of presence of bugs in the system design. These bugs can bring out
dubiousness of the system. It becomes incredibly critical to check such framework or system.
Anti-patterns hinder the comprehension and maintainability of software [9]. Presence of Anti-
patterns in code also increases the chances of its fault proneness [10], [11].

This paper presents an analysis of techniques and their evaluation metrics from

literature for anti-pattern detection. Open research problems in the area have also been
discussed to implicate new research horizons.

LITERATURE REVIEW

Anti-patterns need to be identified, monitored and removed to improve the
maintainability and comprehension. It is not an easy task and becomes a challenge for complex
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and large systems. Literature survey is conducted to review different types of anti-patterns,
their characteristics, detection techniques and detailed comparison. All these are discussed in
detail in this section.

ANTI-PATTERNS

There are more than thirty kinds of anti-patterns identified by different researchers [4],
[8]. Only those anti-patterns have been discussed here that have tools and techniques proposed
for their detection.

Blob/God Class

Blob / God class is a class having too much responsibilities i.e. it has a lot of attributes
and methods.

Feature ENVY

Feature envy is a class that takes more interest in some other class. Such a class is
largely reliant on the ‘envied’ class. Cohesion of envied class is reduced due to the feature
envy.

Duplicate Code/Clone Code

These are classes with same code structure at multiple places in a code. Duplicate code
effects comprehensibility and maintainability of code. Duplicate code anti-pattern is difficult
to detect because different copies of same feature suffers from different changes during
evolution. If a change is desired in a duplicated feature then it has to be made with great care
at all the places in code, thus increasing the effort to change the code. These anti-patterns effect
stability and also increase fault proneness of code.

Refused Bequest
This anti-pattern occurs when the interface of superclass is not supported by the
subclass [4]. It usually is the case when the inherited class overrides too many methods of the
inherited class.
Divergent Change

This is class which is most changed out of all the classes present in the code. Each time
it is changed in multiple ways for different reason. Such classes have low cohesion.

Shotgun Surgery

This anti-pattern is present whenever a little change is desired but one has to do lot of
changes in many different classes [4]. Such anti-patterns are difficult to detect.
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Parallel Inheritance Hierarchies

Parallel inheritance hierarchies occur in the cases when a subclass formation of one
class leads to subclass formation of another class.

Functional Decomposition

This anti-pattern exists when inheritance and polymorphism are poorly used in a class.
Such classes use private fields and create very few methods [12].

Spaghetti Code

This anti-pattern is present when code contains complex methods without any
parameters. Classes interact using instance variables [12]. Spaghetti code is usually
encountered when procedural programming approach is adapted.

Swiss Army Knife

It is a highly complex class with lot of responsibilities. This is the case when a class has
multiple complex methods with lot of interfaces. This anti-pattern is usually confused with blob
but both are different in nature. Blobs are self-centered and work for themselves but the Swiss
army knife works for others.

Type Checking

This anti-pattern refers to the class that implements complicated conditional statements.
They affect the maintainability and understanding of the code. The resulting problems tend to
multiply over time.

CHARACTERISTICS OF ANTI-PATTERNS, THEIR IDENTIFICATION AND
EXTRACTION

Three types of characteristics are commonly used for identification of anti-patterns;
structural, lexical and historical characteristics. Structural characteristics are usually extracted
by analyzing the code. Lexical characteristics are usually extracted using Natural Language
Processing (NLP) and Information Retrieval (IR) methods. Extraction of historical
characteristics requires data mining of software repositories. The methods to extract these
characteristics are discussed in detail in this section.

Structural Characteristics Extraction

Structural characteristics can be extracted by analyzing method calls, shared variable
instances and inheritance variables. Method call analysis can be done using Call-based
Dependence between Methods (CDM) [13], Information flow-based Coupling (ICP) [14],
Message Passing Coupling (MCP) [15] and Coupling Between Object classes (CBO) [15].
CDM is the most widely used technique to extract structural characteristics from code. It
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represents the coupling of methods. It has been used in different researches to identify feature
envy [16], [17], blob [18]- [20], refused bequest [21], type checking [22], divergent change
[23] and shotgun surgery [23].

Shared instance-based analysis can be implemented by finding out the structural
similarity between methods (SSM) [24] or by using lack of cohesion of methods (LCOM) [25].
Researchers have used shared instance-based analysis to detect blob [13], [26] and spaghetti
[26] anti-patterns from code. Analysis of relationships between two classes makes use of a
Boolean value to indicate the presence of inheritance between two classes. This method has
been utilized by researchers to detect parallel inheritance [27] and refused bequest [21].

Lexical Characteristics Extraction

Lexical characteristics are extracted using latent semantic indexing (LSI) [28], [29],
that looks for the textual similarity. Feature envy [16] and blob [13] have been detected using
lexical characteristics analysis.

Historical Characteristics Extraction

Different mining techniques are used to analyze software repositories for extraction of
historical characteristics. Co-changes either at the file level or method level are analyzed to
extract historical features of a code. Mining of log files is done using configuration
management tools (CMTs) [30] to analyze co-changes at file level. For analyzing co-changes
at method level a tool named Markos project [31] is used.

ANTI-PATTERN DETECTION APPROACHES

There exist many approaches for anti-pattern detection. These approaches have been
grouped into classes based on the searching techniques and characteristics used. Some of the
commonly used methods are discussed in this section.

Heuristic Based Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling
are used to determine blobs in code [25]. Example of such a detection tool is DECOR [26] that
uses rule cards to detect blobs. Another system named Marinescu [32] uses cohesion, coupling,
absolute and relative threshold to discriminate blob and clean classes.

Structural Characteristics Based Approaches

Researchers often use structural characteristics of the code to detect anti-patterns. Move
method refactoring (MMR) [16], [17] uses structural information to transfer a method to a
particular class if the method uses more features of that class. JDeodorant [22] is a tool that
uses MMR to remove feature envy from code. JDeodorant is also used to identify type checking
and blob anti-pattern [18], [20], [22]. Syntactic or structural similarity can also be found using
abstract syntax tree (AST) [33]. AST is traversed to calculate the referencing classes for each
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field, so that feature envy can be identified. Many approaches have been proposed to identify
duplicate / clone code by finding out syntactic or structural similarity using AST [12], [34],
[35]. Static analysis of the source code and dynamic evaluation of unit test are used to detect
refused bequest [4], [21]. Structural properties can also be used to find out probabilities cdegree
[23] to calculate change propagation probability (DCPP). DCPP helps to identify divergent
change and shotgun surgery from code.

Historical Characteristics Based Approaches

Historical characteristics along with the structural characteristics of code are used to
identify blobs, feature envy, divergent change, shotgun surgery and parallel inheritance
hierarchies [27]. For blobs, regardless the type of change the date of change as indicated by
code history log can give useful information. For feature envy detection, researchers lookout
for a method that undergo alterations more often with an envied class on its own. Divergent
classes are detected as multiple sets of methods, each set containing all the methods that change
together but independently from methods in other classes. If a method changes with several
other methods in other classes then it is considered to be shotgun surgery anti-pattern.

Lexical Characteristics Based Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling
are used to determine blobs in code [25]. Example of such a detection tool is DECOR [26] that
uses rule cards to detect blobs. Another system named Marinescu [32] uses cohesion, coupling,
absolute and relative threshold to discriminate blob and clean classes. CCFinder [36] is a tool
that uses lexical characteristics to identify duplicate clone code. Parallel inheritance hierarchies
can be identified using lexical characteristics [4].

Mixed Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling
are used to determine blobs in code [25]. Example of such a detection tool is DECOR [26] that
uses rule cards to detect blobs, spaghetti code, swiss army knife and functional decomposition
from code. Trees and syntactic analysis are combined to detect duplicate code. DECKARD is
a tool that uses the same approach [37]. For borderline classes, while detecting blobs, rule cards
are converted to Bayesian network of metric values [19]. Researchers applied the same
approach but used signatures to determine similarity instead of rule cards for blob detection
[20]. Most of the time rules are combination of different properties like quantitative, structural
and lexical manifestations [24]. An automated anti-pattern detection approach based on
detection rules is proposed by Kessentini et al. [38]. Another anti-pattern detection approach
is proposed based on Prolog rules [39].

Goal-Question-Metric (GQM) based approach deliberately builds Bayesian Belief
Networks (BBNSs) to distinguish detection of anti-patterns in projects [19]. Oliveto et al.
proposed a technique based on numerical analysis for anti-patterns detection using B-Splines
(ABS) [20]. Logic based approach using prolog predicates is also used to detect structural and
behavioral aspects of anti-patterns by researchers [39]. Palladio architectural models are used
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by Trubiani et al. for detecting and solving performance anti-patterns [40]. A metrics-based
approach is also used for the identification of the area for code improvement [41]. Detection
algorithms are also proposed from conditions using domain-specific language [26].

Automatic refactoring tools can be used to increase the quality of code [42]. Graphical
user interface (GUI) based testing technique is proposed for computerization testing [43].
Genetic programming is used to detect web service anti-patterns [44]. Support vector machines
(SVM) are also used for anti-pattern detection [45]. Process models for control-flow anti-
patterns are devised by Han et al. [46].

COMPARISON

A detailed comparison of techniques for anti-pattern detection and correction as well as
of the research work conducted by different researchers is conducted. Summarized tables of
both comparisons for anti-pattern detection and correction are given.

COMPARISON OF DIFFERENT ANTI-PATTERN DETECTION APPROACHES

A comparison of anti-pattern detection approaches to improve system code, their
advantages and limitations are given in Table 1. Different factors are considered for comparison
like refactoring approach, types of anti-patterns detected, tools used in detection process,
methodology adopted, system on which the technique is evaluated. It is obvious from the
comparison that most of the work is inclined towards automated detection and in combinational
field the major advantage of automated refactoring in anti-pattern detection is time saving mode
as compared to semi-automated or manual detection.

COMPARISON OF DIFFERENT ANTI-PATTERN CORRECTION APPROACHES

As mentioned earlier that there is very little work found in literature for correction
purpose of anti-pattern. The comparison of anti-pattern correction approaches to improve
system code, their advantages and limitations are given in Table 2. Different factors are
considered for comparison like refactoring approach, types of anti-patterns corrected, tools
used in correction process, methodology adopted, system on which the technique is evaluated.

It is evident from the comparison that new approaches are inclined towards automated

correction and in combinational field the major advantage of automated refactoring in anti-
pattern correction is time saving mode as compared to semi-automated or manual detection.
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Table 1: Comparison of Different Anti-pattern Detection Approaches
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Table 2: Comparison of Different Anti-pattern Correction Approaches
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Table 3: Comparison of Combinational Approaches for Detection and Correction of Anti-patterns
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FUTURE DIRECTIONS

While taking anti-patterns refactoring into consideration there is a lack of detailed
correction approach to correct anti-patterns in source code to improve the quality of code and
to minimize testing efforts. An approach that can first detect and then correct the detected anti-
patterns for minimizing testing efforts will be very helpful. With the help of automated
correction approach developers can modify the project very easily while keeping testing efforts
low and service quality of system high. The continuous involvement of developer is
compulsory for source code related projects. Therefore, if correction approach is used to
manage anti-patterns in source code it will be a remarkable contribution.

Linguistic anti-patterns [55] are attracting many researchers nowadays. Inappropriate
or missing comments, ambiguous selection of identifiers and poorly used coding standards
increase the risk of presence of anti-patterns in code [56]-[61]. Design patters focus on
reoccurring problems of code while linguistic anti-patterns emphasize on symptoms and their
consequences.

Most of the identification systems rely on the static analysis of code. There is a need to
dynamically analyze the behavior of code and extract the characteristics accordingly. Historical
characteristics should also be incorporated with structural characteristics to improve precision
of the identification systems.

CONCLUSION

With the rapidly moving technology market, the software also needs to evolve day by
day to meet the changing market and user needs. Several approaches are proposed for anti-
pattern detection at different levels of software lifecycle. There is a need of an automated anti-
pattern correction approach that can help the developers in developing and modifying software.
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