
PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

37

A Systematic Review of the Approaches for

Anti-Pattern Detection and Correction

SYEDA GHANA MUMTAZ, HUMA TAUSEEF*,

MUHAMMAD ABUZAR FAHIEM, SAIMA FARHAN

Department of Computer Science, Lahore College for Women University, Lahore Pakistan

*Corresponding author’s email: humaiftikhar@hotmail.com

Abstract

Pattern is a prominent strategy amongst the most basic and capable strategies to

enhance the outline, and subsequently upgrade the practicality and reusability of code. Anti-

pattern identification is a helpful procedure for picking up information on the outline issues of

existing systems and enhances the system's perceptions, which therefore upgrade the product

viability and development. Various reviews have been directed and many tools have been

produced to recognize anti-patterns, while just few reviews have considered the anti-pattern

correction, which has not been researched with a similar degree of anti-pattern correction. Anti-

pattern detection and correction approach combined together will be an effective approach to

handle issues that arises during software modification. This paper reviews the existing

approaches for anti-pattern detection and correction.

Keywords: Anti-patterns, Code smell, Software refactoring

INTRODUCTION

Nowadays, we are living in the age of technology, software and gadgets. With the

passage of time, technology and gadgets become outdated and their new and updated versions

become available in the market. Similarly, software also becomes obsolete to cope up with the

changing demand of market. Software needs to be updated with the passage of time by adding

new features and functionality. Software program enrichment, alteration and variation to

accommodate new demands are complicated tasks [1]. These updates are most of the time done

in a hurry by the developers to meet the demanding needs of market and users. Functionality

enhancement of existing software systems always fetches parallel decrease in the quality of

service (QoS) and an increase in difficulty of code [2], [3].

Software must be updated in such a way that there should be no change in overall

functionality. Due to shortage of time and hurry, defects are induced in the design of software

that subsequently degrades the quality of the software systems. There is a need to remove these

defects to maintain the quality of the software systems. The defects that are introduced during

the designing of code can be removed by refactoring process. Refactoring is the process in

which written code is improved in a way that the internal structure of the source code is altered

mailto:humaiftikhar@hotmail.com

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

38

without varying its external behavior [4]. Basic concept of refactoring is to change different

types of software artifacts.

Refactoring helps to enhance the quality of code by improving reusability,

maintainability and modifiability. It is essential to accumulate the proper expertise, abilities,

strategies, and equipment to completely benefit from refactoring.

Code smells are structural indicators in the code that propose the presence of a problem

in the software code [4]. Code smells make the software maintainability and understandability

hard for developers [5]. Presence of Code smells indicate that refactoring of code is needed.

Code smells are issues that occur when basic qualities of programming are affected; no error

occurs at execution time indicating that there are code sections that need removal or

improvement by refactoring [6]. Code smells do not necessarily affect the functionality of the

software but it is very important to look deeper to dig out if there is an underlying problem.

Code smells don’t give the solution of the problem but they list down the possible refactoring

techniques which can be used to solve them. Code smell detection methods are used to identify

the parts that require refactoring. There are many kinds of code smells and numerous software

refactoring techniques that are available for use. Some design solutions appear to be valuable

for the reconstruction of design in updated procedure of code but their long-term consequences

are harmful for design and quality of code. These design solutions are called anti-patterns.

Anti-patterns are common reoccurring problems of design introduced by developers in

the software projects due to lack of adequate knowledge and experience to resolve a particular

problem of design patterns. Just like code smells occurrence of anti-patterns in system

decreases the quality of systems. Anti-patterns are used to categorize the common problems

and their harmful effects, consequences and preventive measures [7]. Anti-pattern is an

industry terminology for commonly occurring mistakes in software projects [8]. Presence of

anti-patterns obstructs the maintenance process and escalates the risk of faults in the systems.

Anti-patterns have negative impact on the system as they are poor programming practices.

Anti-pattern examination is a fundamental need of any software development procedure. Prior

knowledge of anti-patterns assists proficiency to prevent them or to recuperate from them. The

structures having anti-patterns are much significantly testable. Presence of anti-patterns in any

system is a strong indicator of presence of bugs in the system design. These bugs can bring out

dubiousness of the system. It becomes incredibly critical to check such framework or system.

Anti-patterns hinder the comprehension and maintainability of software [9]. Presence of Anti-

patterns in code also increases the chances of its fault proneness [10], [11].

This paper presents an analysis of techniques and their evaluation metrics from

literature for anti-pattern detection. Open research problems in the area have also been

discussed to implicate new research horizons.

LITERATURE REVIEW

Anti-patterns need to be identified, monitored and removed to improve the

maintainability and comprehension. It is not an easy task and becomes a challenge for complex

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

39

and large systems. Literature survey is conducted to review different types of anti-patterns,

their characteristics, detection techniques and detailed comparison. All these are discussed in

detail in this section.

ANTI-PATTERNS

There are more than thirty kinds of anti-patterns identified by different researchers [4],

[8]. Only those anti-patterns have been discussed here that have tools and techniques proposed

for their detection.

Blob/God Class

Blob / God class is a class having too much responsibilities i.e. it has a lot of attributes

and methods.

Feature ENVY

Feature envy is a class that takes more interest in some other class. Such a class is

largely reliant on the ‘envied’ class. Cohesion of envied class is reduced due to the feature

envy.

Duplicate Code/Clone Code

These are classes with same code structure at multiple places in a code. Duplicate code

effects comprehensibility and maintainability of code. Duplicate code anti-pattern is difficult

to detect because different copies of same feature suffers from different changes during

evolution. If a change is desired in a duplicated feature then it has to be made with great care

at all the places in code, thus increasing the effort to change the code. These anti-patterns effect

stability and also increase fault proneness of code.

Refused Bequest

This anti-pattern occurs when the interface of superclass is not supported by the

subclass [4]. It usually is the case when the inherited class overrides too many methods of the

inherited class.

Divergent Change

This is class which is most changed out of all the classes present in the code. Each time

it is changed in multiple ways for different reason. Such classes have low cohesion.

Shotgun Surgery

This anti-pattern is present whenever a little change is desired but one has to do lot of

changes in many different classes [4]. Such anti-patterns are difficult to detect.

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

40

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies occur in the cases when a subclass formation of one

class leads to subclass formation of another class.

Functional Decomposition

This anti-pattern exists when inheritance and polymorphism are poorly used in a class.

Such classes use private fields and create very few methods [12].

Spaghetti Code

This anti-pattern is present when code contains complex methods without any

parameters. Classes interact using instance variables [12]. Spaghetti code is usually

encountered when procedural programming approach is adapted.

Swiss Army Knife

It is a highly complex class with lot of responsibilities. This is the case when a class has

multiple complex methods with lot of interfaces. This anti-pattern is usually confused with blob

but both are different in nature. Blobs are self-centered and work for themselves but the Swiss

army knife works for others.

Type Checking

This anti-pattern refers to the class that implements complicated conditional statements.

They affect the maintainability and understanding of the code. The resulting problems tend to

multiply over time.

CHARACTERISTICS OF ANTI-PATTERNS, THEIR IDENTIFICATION AND

EXTRACTION

Three types of characteristics are commonly used for identification of anti-patterns;

structural, lexical and historical characteristics. Structural characteristics are usually extracted

by analyzing the code. Lexical characteristics are usually extracted using Natural Language

Processing (NLP) and Information Retrieval (IR) methods. Extraction of historical

characteristics requires data mining of software repositories. The methods to extract these

characteristics are discussed in detail in this section.

Structural Characteristics Extraction

Structural characteristics can be extracted by analyzing method calls, shared variable

instances and inheritance variables. Method call analysis can be done using Call-based

Dependence between Methods (CDM) [13], Information flow-based Coupling (ICP) [14],

Message Passing Coupling (MCP) [15] and Coupling Between Object classes (CBO) [15].

CDM is the most widely used technique to extract structural characteristics from code. It

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

41

represents the coupling of methods. It has been used in different researches to identify feature

envy [16], [17], blob [18]– [20], refused bequest [21], type checking [22], divergent change

[23] and shotgun surgery [23].

Shared instance-based analysis can be implemented by finding out the structural

similarity between methods (SSM) [24] or by using lack of cohesion of methods (LCOM) [25].

Researchers have used shared instance-based analysis to detect blob [13], [26] and spaghetti

[26] anti-patterns from code. Analysis of relationships between two classes makes use of a

Boolean value to indicate the presence of inheritance between two classes. This method has

been utilized by researchers to detect parallel inheritance [27] and refused bequest [21].

Lexical Characteristics Extraction

Lexical characteristics are extracted using latent semantic indexing (LSI) [28], [29],

that looks for the textual similarity. Feature envy [16] and blob [13] have been detected using

lexical characteristics analysis.

Historical Characteristics Extraction

Different mining techniques are used to analyze software repositories for extraction of

historical characteristics. Co-changes either at the file level or method level are analyzed to

extract historical features of a code. Mining of log files is done using configuration

management tools (CMTs) [30] to analyze co-changes at file level. For analyzing co-changes

at method level a tool named Markos project [31] is used.

ANTI-PATTERN DETECTION APPROACHES

There exist many approaches for anti-pattern detection. These approaches have been

grouped into classes based on the searching techniques and characteristics used. Some of the

commonly used methods are discussed in this section.

Heuristic Based Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling

are used to determine blobs in code [25]. Example of such a detection tool is DÉCOR [26] that

uses rule cards to detect blobs. Another system named Marinescu [32] uses cohesion, coupling,

absolute and relative threshold to discriminate blob and clean classes.

Structural Characteristics Based Approaches

Researchers often use structural characteristics of the code to detect anti-patterns. Move

method refactoring (MMR) [16], [17] uses structural information to transfer a method to a

particular class if the method uses more features of that class. JDeodorant [22] is a tool that

uses MMR to remove feature envy from code. JDeodorant is also used to identify type checking

and blob anti-pattern [18], [20], [22]. Syntactic or structural similarity can also be found using

abstract syntax tree (AST) [33]. AST is traversed to calculate the referencing classes for each

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

42

field, so that feature envy can be identified. Many approaches have been proposed to identify

duplicate / clone code by finding out syntactic or structural similarity using AST [12], [34],

[35]. Static analysis of the source code and dynamic evaluation of unit test are used to detect

refused bequest [4], [21]. Structural properties can also be used to find out probabilities cdegree

[23] to calculate change propagation probability (DCPP). DCPP helps to identify divergent

change and shotgun surgery from code.

Historical Characteristics Based Approaches

Historical characteristics along with the structural characteristics of code are used to

identify blobs, feature envy, divergent change, shotgun surgery and parallel inheritance

hierarchies [27]. For blobs, regardless the type of change the date of change as indicated by

code history log can give useful information. For feature envy detection, researchers lookout

for a method that undergo alterations more often with an envied class on its own. Divergent

classes are detected as multiple sets of methods, each set containing all the methods that change

together but independently from methods in other classes. If a method changes with several

other methods in other classes then it is considered to be shotgun surgery anti-pattern.

Lexical Characteristics Based Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling

are used to determine blobs in code [25]. Example of such a detection tool is DÉCOR [26] that

uses rule cards to detect blobs. Another system named Marinescu [32] uses cohesion, coupling,

absolute and relative threshold to discriminate blob and clean classes. CCFinder [36] is a tool

that uses lexical characteristics to identify duplicate clone code. Parallel inheritance hierarchies

can be identified using lexical characteristics [4].

Mixed Approaches

These approaches use software metrics to detect anti-patterns. Cohesion and coupling

are used to determine blobs in code [25]. Example of such a detection tool is DÉCOR [26] that

uses rule cards to detect blobs, spaghetti code, swiss army knife and functional decomposition

from code. Trees and syntactic analysis are combined to detect duplicate code. DECKARD is

a tool that uses the same approach [37]. For borderline classes, while detecting blobs, rule cards

are converted to Bayesian network of metric values [19]. Researchers applied the same

approach but used signatures to determine similarity instead of rule cards for blob detection

[20]. Most of the time rules are combination of different properties like quantitative, structural

and lexical manifestations [24]. An automated anti-pattern detection approach based on

detection rules is proposed by Kessentini et al. [38]. Another anti-pattern detection approach

is proposed based on Prolog rules [39].

Goal-Question-Metric (GQM) based approach deliberately builds Bayesian Belief

Networks (BBNs) to distinguish detection of anti-patterns in projects [19]. Oliveto et al.

proposed a technique based on numerical analysis for anti-patterns detection using B-Splines

(ABS) [20]. Logic based approach using prolog predicates is also used to detect structural and

behavioral aspects of anti-patterns by researchers [39]. Palladio architectural models are used

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

43

by Trubiani et al. for detecting and solving performance anti-patterns [40]. A metrics-based

approach is also used for the identification of the area for code improvement [41]. Detection

algorithms are also proposed from conditions using domain-specific language [26].

Automatic refactoring tools can be used to increase the quality of code [42]. Graphical

user interface (GUI) based testing technique is proposed for computerization testing [43].

Genetic programming is used to detect web service anti-patterns [44]. Support vector machines

(SVM) are also used for anti-pattern detection [45]. Process models for control-flow anti-

patterns are devised by Han et al. [46].

COMPARISON

A detailed comparison of techniques for anti-pattern detection and correction as well as

of the research work conducted by different researchers is conducted. Summarized tables of

both comparisons for anti-pattern detection and correction are given.

COMPARISON OF DIFFERENT ANTI-PATTERN DETECTION APPROACHES

A comparison of anti-pattern detection approaches to improve system code, their

advantages and limitations are given in Table 1. Different factors are considered for comparison

like refactoring approach, types of anti-patterns detected, tools used in detection process,

methodology adopted, system on which the technique is evaluated. It is obvious from the

comparison that most of the work is inclined towards automated detection and in combinational

field the major advantage of automated refactoring in anti-pattern detection is time saving mode

as compared to semi-automated or manual detection.

COMPARISON OF DIFFERENT ANTI-PATTERN CORRECTION APPROACHES

As mentioned earlier that there is very little work found in literature for correction

purpose of anti-pattern. The comparison of anti-pattern correction approaches to improve

system code, their advantages and limitations are given in Table 2. Different factors are

considered for comparison like refactoring approach, types of anti-patterns corrected, tools

used in correction process, methodology adopted, system on which the technique is evaluated.

It is evident from the comparison that new approaches are inclined towards automated

correction and in combinational field the major advantage of automated refactoring in anti-

pattern correction is time saving mode as compared to semi-automated or manual detection.

Kahr & Kaar 2014 [43] Ujhelyi, 2014 [47] Szoke, 2016 [42] REFERENCE

1 I

•

il; 	5: H 5r52
R R

'
"' ".• 5 .-7-. 	a P W '

FriS 	EE

(9

	

.1 '-' R d 	°AI g RI;
EN 	a 	.',1 	• 	0 by 	g

P r. 	R . .0 	
°

rD 	ro 	.7.
CP 	 E... 	 P -

C. 	m
D

evelopm
ent of

autom
ated

 to
o

l to
im

prove the
 source

code
 quality OBJECTIVE

.-
a c. c AUTOMATIC

APPROACH

.'.. cr.
as

ANTI-PATTERNS.
DE TE C TED

1

— 	— 	- 	.

N 	6 t
P- g

TOOLS

	

el r"-- ell 	r°
'6 	P 	P ...q. 	0„ 	P 	P

m 	i'' ri

• • 	•

	

B-..9 g2. 	. 	1 CI 	.

VI i 	.g 	. 	5 r,c114 ' V

	

0:' g-14.5 	, R
SR

■

.Analysis:

▪

D
esire

 &

D
evelopm

ent
refactoring
fram

ew
ork,

=
 A

pplication METHODOLOGY

a a NO. OF SYSTEMS
EVALUATED

.g2.- .. 	E
r

6' 2A'0,...q'2
g

,2
.
 b.' . [......6... i.

= Yu g ,,
— ' rD 	3
.
 .1

T
he

 project
provided the
businesses a dunce
to

 refracto
r their

 code
and im

prove code
m

aintainability

ADVANTAGES

r
K... 	5.

ra

The fram
ew

ork
Supportin

g
refactoring

 of
specific

 group
 of

coding issues.

LINIITATIONS

R• riki nil

6 ' P a
gE..2

g
0 0R-

K. ET 	qg s.
2, 	.7 	0

11 1.0 Fl 	all, ...,.. 	. 	1,-.--..., 	1
PMgRr-pu,,H.

 .I ,
 . 	.

, 7 E. R R. • 	R. a:al"
.,• 	,--. .-0 	ig-.. 	Rini

P- E. 	IN 	p. g F.
 R-- 	c',., 	rr' 	rb R "

R
ecom

m
endations

can
 serve as a

guideline in future
for desig

n
 and

developm
ent of

autom
atic

 refactoring
tools.

CONCLUSION

T
ab

le 1
: C

om
p

ariso
n

 of D
ifferen

t A
n

ti-p
attern

 D
etection

 A
p

p
roach

es
PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

44

Ouui•.et-at .2013144p Dhambri .irt-at .2008-F11p Fourati..ei-af..2011 .[4.8]0 REFRENCEn

u.

R. 	E. g: 	9-
• m 	'A 	c• 	.

k 0 	r ̀? 	•;'
rim 	2 	0-.. g 	I 	'''

ETC. 	0 	7..
LF` 	'

., 	a„ 	. RS 	a. p.3 	-. = 0 r, 	Eq 0
CD 	CE 	CS. 	Ps
	
per;

Fk 	», 	M- n 	.-.., R
t 	. 	&L

(I • 	g

l 	2..

	

,.=L - 0 	gi 	a. 	N. R. eh 	.
n 	,th 	

.,
	,. 	r',.3

	

...,. 	0

	

'''. 	5 	8' ,,,c'

	

'I. 	. 	' 	a '°

	

' 	P 	-

	

4 	• N 8
Dr

OBJE CTIVEci

CD
ri Z

z
Z AUTOMATIC •

APPROCTh

F.
= 	.
R 	-.e.

n g- ...

A 	a- i g 	''.. r. F. 	E . ra -

	

 , 	0 	Eel
3111'1, --..B 	g •
el 	• 	• 	m M.

k•

	

, d • P 	' 	0-
 z cl g

"

	

F.2 	. 	.
'--5 	k.

ANTI-PATTERNS-
DETECTEDro

6

n 0

6

TOOLSK2

.

4Inputw
eb.service-

anti-pattern-
instances,'

.

4InputW
eb.sers.-ice-

m
etrics1

siD
eriv

era.setaf
detection.rales1

T.
1.... 	2:\ 	2-', 	""•••• 	2-', 	""•••• 	11

_, ,,-..z.r.E.K•g, 	.i.r.- 	0- E 	. 	_,5 	n 	pa 	a- 	1.7.•i• 	•
cDtt 	 . 	5...rro 	-iv 0 	• 	1.•••• ❑ —

Z 	'-E 	tg 	'A 	ci 0 	.

5 	 Fel 	•
'-.. 	:7E.' 	-..' 	A

A

7 	 76
ED

44 	() 	IN 	'•••• 	1r\ t A-

m.m,-5 	IN, 	5..a 	n 	'' 	R._ 41 5. o 	E 	l'" 	". %L! 	. g• 	5 k 	— R
g- 	• e- 	.• 0 	g

B

METHODOLOGY

. „
9 .
w • CD
TS a .

.=. t••3
ri 6

NO. -OF - SYSTEMS •
EVALUATEIM

E N 	V, 0.
2 	

rs 	2 	E I , 	Z l'
4 	.

r, 	•-': 	° P 	, 0 	cr gs
Lt 	.— 	.—. 	cg. • els 	C 	Ea. 	,-;
1 	. 	2 	7 P3
SD 	. ' 	g 	o

k .- 	•

	

I '15: 	k- 0 	E 	•L'.
N 	en A 	r. 	E 	P4 	̀.

R 	P 	- 	= 	0 	r.•,. --

	

 F, 	6

	

. rm. 	179 	cri 	'1, 	ri?

	

 g 	CD Rte? 	• 	„

	

ea 	6
.-P F

F' g- 	g... FF p"
6 	R 	„......... 	e. 	v.

„_rS 	Lp, 	g ,,. ,,..-ti
— 	•,. 	rL 	4:6 ---. 	.-
R 	a. r' 6 	a
6 	t IS.' 	'-'
° M 	• P
E 	V 	•

14 	•

ADVANTAGE Sop

W . w
P 	0.
m.i. 	0 0 -., r.

-.,

. 	0

0 0 	a =.:
IA

.-..- 	...L.

6

AATIONS0 LDIT

CS -a -a 	s- N H 	C. C.
6' ...„

R 	
H 	I 	
.c.,..,. 	I. 	2 B P

-- 1 mi 	1 th

6

2- , 	, , 	n

a
. ;

-

E 	-”.

	

' ''''
g 	g 	, . 	D •

	

W_
; 	a. ..

A b rT

	

0 	6 	•
hi 	•

0
g 	

•

...c: 	0 	-: 	;J...
.-.. 	-.1 	CD
E. 	.• 	q
Ea 	rs 	•.; 	8
8. 	l'1- g- N

I., 7
• .7,..

rti. 0
ca 	9_

CON CLUSION

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

45

Tan et al. 2016 [49] Stoianov & Sara 2010 [39] REFRENCE

..1g 	riZp3. 	R' 2, 	8- 	5_
13 	lii-

E 1
tr. g a -ii

8 	0-
1. 	

a. 	c.
0' 	

Q
" 	-Li3

"A a. 	wz

, =. 	'l 	m P.

.- c $.- c $ 	A., 	n•

rb 	— 9 1
E E i'A

I - 6D- ,v, it R
6% 	.. • Q

O 	1,0 1-1,

OBJECTIVE

Z
0 21 AUTOMATIC

APPROCH

'-o 	ron n

R 	13 P:

Cil

ANTI-PATTERNS
DETECTED

un 4-2
ql g
Pz .ci

8
(10

18
R R

4'
TOOLS

.

	

4-, 	A... 	A... 	A., 	A... 	A... 	A...
:i u,.-3 ',r.0T1r02,11 W 1=] V,crt 'k:

	

I 	g al 	°4 'a N 'r-.2.4 E

	

a 	w 	it 	a. 	0 .

	

'PL- W 	T''P 	"IR 	H 	I P ,

	

MI 	. 	
g•
n
	

rb

.

	

rb 	 MI

	

.h 	 .h

	

A... 	".. to 	.c.. 	'4 	4-.. 	4.... ci

- 6.E c2
g

ri.„.

! a 	! g:

l

g . tir 4
.,
 k - , •
,
k-

. , . .
g . f ' a

m

. .. 	, 	Sid 	a, 	5- 	r.', 	n ,

	

Br, 	, a 	,n"' 	ag 	m 	in 	a. 03

	

8- 	 .D

	

,'
	

r-- 	0 	ur-

	

1 	0 	Oa
0I:6 	A Ea 	c‘,. 	,..,

METHODOLOGY

c• NO. OF SYSTEMS
EVALUATED

D 	D g- '?, 	- re

	

a. -0 	a. ,,, 	2 ,... 	t, 	m.
a F 0,517,

	

.'"' 	0,- 	o. ..,02 	.2, ..;i 	'•-•q-

	

g 	a Ri.
• R 	.„ tr.a

	

0 	0. a- 1,. 	E" 	a- ron

	

 • i 	Wr E. 1 W
t 	PP 	:."2 . c' 	'-' 	3.1-'. .

	

N' P 	. 	g... ," 	„,,- , _
• tg 	B 	a a.

p. "nrb 	a. 	MI D1-1. .Z,' 'A 	C.

ADVANTAGES

g.
!...,.4
ii 	la 2

Fl

R 	ca.

rl 	- 2
- 	,•:-. . 	ez,

.

LIMITATIONS

2. n. 	.57.
& ' g .-. 	z - E ...2.-, 	p .

g- '7 '1 	cl 	a 	g.

5
 0 „ , g

6'

V:is.

8 	4 g` a. go 	R - 	B •
,§-,

R o-. R. g 6 , 0 	.

CONCLUSION

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

46

Han etal. 	2013 [4-45] Maiga et al. 2012 [45] REFRENCE

tra

rT.Si

r 16 1 ii 69 i . e
Gug aM 	

r
cl= 1 . 	8

li'' . 	2 	'-1 	5 .-6'
tr.

N , 	'1

'7 - P . 	R 	iz. o- 	'

tp 	pa 	rt. 	cr' 	a. 	g 	2

P-` R

	

-1 — ig 	6 .m
P
.

:,...,,-
a.

tra 	,-s
	'.

OBJECTIVE

.- 1

.,
.-
ED
'''

AUTOMATIC
APPROCH

Pv, 	co 	c-5
t' R

R 	rE.

F.

n E,1 ci ,ri CO

L4 	1.• 	. -
m P.' .-,. 	• 	F.', 	a

ANTI-PATTERNS
 DETECTED

8
.g TOOLS

2.

'

is3
cr

IA

ni. 	 nb

	

E' 	
n 	-) n..0 	ay. 	•

8,...-0 ,-;

	

 .-• • 	..

	

0 2 	r•s` 	•
cs 	cs 	5. 	to oz,

	

. 	 1-1. 	i-P 	 5

0 ,-
• — 	B 	PEL. 	nr-'. 	:2h'

	

. 	o

	

.4 	n 	R- 	.4 	
.6
.1-._.

	

. 	N--
m 	 0 	M.': w

rr. P 5 Sp
0-.

in 	in

	

.1 	L1 	 Vd 0
 u 	u „ 	. 	i.-c,- q- 	c. 	s. pa 	...73 	et. cr.

	

a g- U- s. Q. 	g . - -:-R` g 	na 	4 	is 	. 	.--,. 	n 	r-, - 	.„. 	, 	a 	a. 	a

	

 is 	C-.- 	- 'a rTa 4
 LOS

S
	r. 	E.4 	R 	, 	g.. 	,.,rt.

'4 	" R - s - '-- 1.3 	-, 	n— . 	01 5
M 	ff 	pa 	E• 	a -

v.• 	. 	M. 	6.3 .

1 	
(1.1 	

2

METHODOLOGY

.4,, 	FLL-', o 0 ta
0.. n

F
C.
....la NO. OF SYSTEMS

EVALUATED

0 	D 0 0 Po 	ig ci

	

" 0...a" P.- 	5- m

	

._, 	• •• 	rb 	p.-. 	op
 w-agpa.p-.

	

rb 	0
14... mR

	

R 	n. 2

	

9 	1
.i 	tt

sC' .-9 	c 	.1 	rt. 	IF. 	,-n
rb

	

" — 	0

	

,•,. m 	B

w
-6° 	',/,-,'

cr—c, 	vi

F. . ,.., 	G,... 	n
0 	N -w 0
. 	

cp
,,.

'

„..--
ADVANTAGES

K .1. .. 	53 	N 	•
tr6I 	Fr- *.: 	1;1- 	5 . q

Pa 	R 	R. F.
rT,:i 	0 	=

P 	
'''' 	

g 	0.
-, ITO 	La 	a.

_a kr. t i ii. R Pi
E F7 2 	'1'. 	F., 0 	a
Pa 	0
X. 	" g. 	H 	.- H. a 1 .. 	tS 	F. 	5_12 	, ,
0 	ck..,3 	4-A- 	P

	

= 	p„,

	

E .-..''' 	a 2 	1
F ..,7,L 0 	o° ,,

LIMITATIONS

D
...1 	a:

R . g 	k • 0;
Et a. ,-,a 	-0

P6 o 	'''
R 2

0 a

'4. 	F $: 1

8' 	'0 	"
.. 	._,...r3 	.1.

Cn. 	E 	cp 	- 	V,

7 0 E ft E.
0" "'

cr.
•.-

CONCLUSION

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

47

Moha 2010 [26] Ibiza 2012 [45] REFRENCE

P3
Cog

or' '
e4 ty,

0 0.

.1 	.:.-:1 	p 	!!.. 	w

R L I 0 4 i,
2 - 	N v .

iki lu: 5 °3
.1 _ K g• .. P

8- -

OBJECTIVE

o 1-7:
(0 .. AUT ONLATIC

_‘.13PROCH

R.1. E 	
I V,0,1 -c i-31 1

....
i fti_̀"

I

' 	f
ANTI-PATTERNS

DETECTED

.r" TOOLS

0

. 	F.

4,...,

•

..
4... 	'L... 	 1.... 	''' -... 	1.... 	1.... 	1.... 	401.

v u 	al 	E ..E.. 0 	e 	II-

	

 . 	0=, ' 0 	L.F., 	LI; 	Q.

11'1 -
Et
g .

'''.... 	4...

.,.. 	.._ 	2,
14gr 0-: I 	• 2

L Fl '
III ...

•
4... 	4... (-2 H

te a, 	DI E . N• B.
V. 	'• 	'''' r v. ...R
R ..a 	t .4 . 2_

5

..?.

1....

0

4

vi

1....

i-]

.

.

a 	• qq

•
0

METHODOLOGY

,.. L., NO. OF SYSTEMS
EVALUATED

0
Ira 	..-

.:12r:

k..1 0J..1 a
P

ADY..-INT AGE S

2 	- 	. g
j 	LT

lea
LalITATIONS.

!T. 	= a •
fa 	5 	.-.

E.
t

: g
Ig 	'

gi

coNclusioN

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

48

Llano & Pooley 2009 [52] Moha et al. 2.448 [51] Morales 2015 [50]
REFRENCE

3 	; 	:22

P 	P-. rq:
R B '.b' Kt- F

E

0. 5' L
K.

cii-.1 	'A- 	b12
.

..g, ra 	0 	rr.
.P
P. P. E' rD 	Er,

0 	rD
.03

rti 	;t

4.
1=- W

R 	 -Ini

(al 	r.,

.' gr. P.
 g la

Gi.

0

V
rig

0Z AUTOMATIC g.. APPROCH

w
o- ,

tel
g-

hi
1=1 1-0 '1.1.- L .e
1-i 1-3 1-4

H 1-1
n r=i
I'll
CI

..4
cn

1 '-cl

Q
rq-•

•

.r. g

rri
.-c,

.1
O

. 	.

o rb
.-d g —E

au in
r

='

. 	4. 	.

E. P. E4- V. P 1.1_11.t
--: '-ri Pa 	rt.K 	 Wri

Q"kLPPE
rD 	t. 	0

g 	4. 	 "

.

41 g W.2. i 2- -T Ell R
II 	

I-'
NI=_'.gL ilvrE.L.' 	2L. 	0 	11.3

Pa 	5 	g jlt 	'.-rs'12ag
6- F g 	P. 	R-11 g H.

SZ

	

.._.'g 	,ki-'.
rD 	I 	Mr 	,

M
E

T
H

O
D

O
L

O
G

Y

I .=. 1-. I

NO. OF SYSTEMS
EVALUATED

9 	r"
N H k n Cr . oli

E '-U rt. 	cg 	a
cr

ca

110

W d 	I
Ca 	

I. 	i
ry 	11-j1

0-. 0 	'. 	.Z.1 • as

. El 5. m•
P U ri 	a

k g. '4- u'
5-

' 	03 .-N 	r.
E. „, F
ra 	.._
R- ° 6 —
..5' 	2.

t•11'
0
tri

afg- R
s R.

. !v

r., 	H

'13 	rD

N 	.-•
c.) II,

c)

',70
I=1
H
1.6-

6
.-4

ira "4
5 	1 g

- 	r In 	,_, 	u
o

Eb 	rD 	B
5'

Cr, 	Mir IT!

2- 	a n
a.
.g

. 	0, 	,,
P 	g 4
P 	a..

..E 	p.3

INre.0

t ,--ir
W 	A

Rtlggo R.
t, 	.- • la- R 	.

g g -e$ -lw 7

.1" 9 n
.-.. 	g

C
O

N
C

L
U

SIO
N

T
able 2

: C
om

p
ariso

n
 of D

ifferent A
n

ti-p
attern C

orrection
 A

p
p

roach
es

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

49

O'mi et al. 2013 [44] Kesseutini ee al 2011 [38] REFRENCE

Ii:" 0 I 	5 T
r. 	E. 	- g ., 	„_ 	il 	0 a E. 	N 	u

.0 RwEn:' 0-. 	—
'

...-4

1. 511
LD a. g.0.

p
R-

rto CD.1,:'

5 T
g 2

pib 	i-

2

OBJECTIVE

2
AUTOMATIC

APF'ROCH

Il '71 	4 L,S1
8 	p 	Kr... P 	8,...
b 	.-' 	-
ls'
c511.

.

Il ,'71 cl% L,L1
8 	p 	K.. P 	,..
b 	F.--rb 	-
 R
.

Eli

ANTI-PATTERNS
DETECTED

rTl
P
-7d c...2
rTl

U' tri (-2
0 TOOLS

a il .- 	N 	.4 4
.
 FIL.k .,r1. a

	

g'd. ft 	2 P3 T, 2

ff„
. 	..,..„ 	ro- 	.

R1 0_ 	2 	.-. co

	

-8 ' 	pfr in 	0 2, 	 ri

	

1 lg. 	E 	17
1 	R 2

1-

n CM 	Fn. cr kt. 	•
F• a 	a

0 	. E ig ft 8
a.. 	B 	-

k B 	0 E. ky
o 	::',?, 	a. E FL. m. 	ro- 	C. E 	E

a
[i0. 	 (,

METHODOLOGY

... NO. OF SYSTEMS
EVALUA1ED

t 1 Erill _ ra 	.--. 97

m• R. q ,o_.. it
E 	2 8 r.; N-.

ma'
-.

IN 	a.... 5. 	..il 	In-..111 	..7.1 	PLi .

i 	.. c.q. 	R 	-m 	.

 8 	I 	

r. 	
E.

 R

0 .121 	R 	E

	

al 	Q.

.-.
,,

al
. 5 R

ADVANTAGES

r 	h--
mrD 	E 0.

6'.' 	' Lv 	r

	

- 	L-., 	a. 5 61
FT 	, 	r a•

 @
I,-

LIMITATIONSP

izi 5. E. o
q

2 —

7y . P -: .-; rA
O.

mpa

R
alt

R-.

 . 	
CD

. AL
0 8

CONCLUSION

,93

O

0

0

1:1

O

el"

1=1
Sq

tb

Cy

O▪ r

O

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

50

Moha 2007 [54]
Iladimani et a1_ 2011 [53]

=PENCE

	

M 2 g" 	g" IA 1 	'4

	

FEr 	a- 	. a. 	. .

B 	12 	E- r, , : E r .
2 2 G

El- 	f-D 	E rgi .
5

A C4 "4 3

'4 	8- 61: ,c) eb 	CD 	0
0. 0.. 7 CD 	F k

,

PI g 	E
 E

r 	CP 	1--..
F' 	18 	o• "Q

O
CD cr.

'—'

OBJECTIVE

Z
Q

Z
Q

AUTOMATIC
APPROCH

I I ANTI-PATTERNS
DETE CTED

. ' TOOLS

P-P-ags,.- R 	Pa 	2-
r k p,.. 	p o ' 	,I. E

2 	5. H 	0 	ith. 	R 	n. -i 	1:6 in 	n 	all 	c,.. 	p...,i 	0.. al
- 	. 	CD 	° 	CD 	El

in 	8, -
''
' 	6. ,,

44

2 	-. -., = p A 5
P,;, 	eD 	n 	m:,
P T E rrQ .-L. 	R- 2 	"1
B 	4 	c"'
R c[f

1

_ ic,' 1 Y F.L... 	Pi. 	Rg 	,-,,
g I cfJ cfJ . 	0. 	L . Ha ..1, .-,

1
p 	ci 	• c, 	p, 	5. ti

g. a.
P. 	F re 	T, 0 	'6 , 	t 0 	a. (Jo 	— 5- 	ai ,• 	pi. 	n 	g_

r a 	Da 	fb 	[a 	..0 ' 	'-' 	- 	't 	- 	rm c' . rna 	.
P'. 	r' 4 	a 	- trao

E"4 	
s. 	N

	

13 	Pa 1--•
1

0

	

V.. 	pa r.3 	0-2:-1 	 n
2- 	8

.'
	 0

 METHODOLOGY

I
NO. OF SYSTEMS

EVALUATED

Fa
	13

11 	' g. 	rro . 	. R ..- 	,

in 	fb 0 p 	a

M.. rf2ag i
t mt g

g" g. 2 	ii
h,

 3 	51- ADVANTAGES

1 ' LIMITATIONS

oh. 	.i 	a. 	n 	'CS 	A 	s.., 	s..,
4 g- 	c7 8 g g

ER
0 	in

,I 3 g 5.
FIL i.- 	N 	- 	.N.. -' al- 19.. r
I

Q. w 	1

p, 	0. 	•
5- ,'.. 	. 	-
E• g• i -. ra 	"

R 1j 	:7 44
0 ,-,,

,-q

uk
R

t

r 	8- 2 N V g- 2' 2 g 0 	, 	,,,... 	6-, 	,.
E . IT4 	E CD (lel 	C. 	2 	5 	0

crq 	a n' a. .,-, 	,T C. 	... 	8-
g8 Vita in,ig 0

CD 	Da 	cl.• 	1—t 	pi-.

	

 Pa Cr ' 	CD N ra 	0 	1.4
ewe 	n 0 7 2 .

CONCLUSION

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

51

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

52

FUTURE DIRECTIONS

While taking anti-patterns refactoring into consideration there is a lack of detailed

correction approach to correct anti-patterns in source code to improve the quality of code and

to minimize testing efforts. An approach that can first detect and then correct the detected anti-

patterns for minimizing testing efforts will be very helpful. With the help of automated

correction approach developers can modify the project very easily while keeping testing efforts

low and service quality of system high. The continuous involvement of developer is

compulsory for source code related projects. Therefore, if correction approach is used to

manage anti-patterns in source code it will be a remarkable contribution.

Linguistic anti-patterns [55] are attracting many researchers nowadays. Inappropriate

or missing comments, ambiguous selection of identifiers and poorly used coding standards

increase the risk of presence of anti-patterns in code [56]–[61]. Design patters focus on

reoccurring problems of code while linguistic anti-patterns emphasize on symptoms and their

consequences.

Most of the identification systems rely on the static analysis of code. There is a need to

dynamically analyze the behavior of code and extract the characteristics accordingly. Historical

characteristics should also be incorporated with structural characteristics to improve precision

of the identification systems.

CONCLUSION

With the rapidly moving technology market, the software also needs to evolve day by

day to meet the changing market and user needs. Several approaches are proposed for anti-

pattern detection at different levels of software lifecycle. There is a need of an automated anti-

pattern correction approach that can help the developers in developing and modifying software.

REFERENCES

[1] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to evaluate software

system maintainability,” Computer, vol. 27, no. 8, pp. 44–49, Aug. 1994.

[2] A. Garrido, G. Rossi, and D. Distante, “Refactoring for usability in web applications,”

IEEE Softw., vol. 28, no. 3, pp. 60–67, 2011.

[3] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class library migration,” in

ACM SIGPLAN Notices, 2005, vol. 40, no. 10, pp. 265–279.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the

design of existing code. Addison-Wesley Professional, 1999.

[5] J. Padilha, J. Pereira, E. Figueiredo, J. Almeida, A. Garcia, and C. Sant’Anna, “On the

effectiveness of concern metrics to detect code smells: an empirical study,” in Int.

Conf. Advanced Information Systems Engineering, 2014, pp. 656–671.

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

53

[6] J. Fields, S. Harvie, M. Fowler, and K. Beck, Refactoring: Ruby Edition. Pearson

Education, 2009.

[7] M. H. Dodani, “Patterns of Anti-Patterns” J. Object Technol., vol. 5, no. 6, pp. 29–33,

2006.

[8] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns:

refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.,

1998.

[9] M. M. Lehman, “On understanding laws, evolution, and conservation in the large-

program life cycle,” J. Syst. Softw., vol. 1, pp. 213–221, 1979.

[10] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study of

the impact of antipatterns on class change-and fault-proneness,” Empir. Softw. Eng.,

vol. 17, no. 3, pp. 243–275, 2012.

[11] W. Li and R. Shatnawi, “An empirical study of the bad smells and class error

probability in the post-release object-oriented system evolution,” J. Syst. Softw., vol.

80, no. 7, pp. 1120–1128, 2007.

[12] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using

abstract syntax trees,” in Proc. Int. Conf. Software Maintenance, 1998, pp. 368–377.

[13] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying extract class refactoring

opportunities using structural and semantic cohesion measures,” J. Syst. Softw., vol.

84, no. 3, pp. 397–414, 2011.

[14] Y. Lee, B. S. Liang, S. F. Wu, and F. J. Wang, “Measuring the coupling and cohesion

of an object-oriented program based on information flow,” in Proc. Intl. Conf.

Software Quality, 1995, pp. 81–90.

[15] W. Li and S. Henry, “Maintenance metrics for the object oriented paradigm,” in Proc.

First Int. Symp. Software Metrics, 1993, pp. 52–60.

[16] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “Methodbook:

Recommending move method refactorings via relational topic models,” IEEE Trans.

Softw. Eng., vol. 40, no. 7, pp. 671–694, 2014.

[17] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring

opportunities,” IEEE Trans. Softw. Eng., vol. 35, no. 3, pp. 347–367, 2009.

[18] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Identification and

application of extract class refactorings in object-oriented systems,” J. Syst. Softw.,

vol. 85, no. 10, pp. 2241–2260, 2012.

[19] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian approach for

the detection of code and design smells,” in 9th Int. Conf. Quality Software (QSIC’09),

2009, pp. 305–314.

[20] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Numerical signatures of

antipatterns: An approach based on b-splines,” in 14th European Conf. Software

Maintenance and Reengineering (CSMR 2010), 2010, pp. 248–251.

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

54

[21] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis, “Identification of

refused bequest code smells,” in IEEE Int. Conf. Software Maintenance, 2013, pp.

392–395.

[22] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant: Identification and

removal of type-checking bad smells,” in 12th European Conf. Software Maintenance

and Reengineering (CSMR 2008), pp. 329–331.

[23] A. A. Rao and K. N. Reddy, “Detecting bad smells in object-oriented design using

design change propagation probability matrix,” in Int. Multi Conf. of Engineers and

Computer Scientists, 2008, vol. I, pp. 1001–1007.

[24] G. Gui and P. D. Scott, “Coupling and cohesion measures for evaluation of component

reusability,” in Proc. 2006 Int. Workshop Mining Software Repositories, 2006, pp. 18–

21.

[25] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented design,”

IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[26] N. Moha, Y.-G. Gueheneuc, A.-F. Duchien, and Others, “Decor: A method for the

specification and detection of code and design smells,” IEEE Trans. Softw. Eng., vol.

36, no. 1, pp. 20–36, 2010.

[27] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk,

“Detecting bad smells in source code using change history information,” in Proc. 28th

IEEE/ACM Int. Conf. Automated Software Engineering, 2013, pp. 268–278.

[28] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual cohesion of classes

for fault prediction in object-oriented systems,” IEEE Trans. Softw. Eng., vol. 34, no.

2, pp. 287–300, 2008.

[29] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using information retrieval-

based coupling measures for impact analysis,” Empir. Softw. Eng., vol. 14, no. 1, pp.

5–32, 2009.

[30] A. Leon, Software configuration management handbook. Artech House, 2015.

[31] A. Laskowska, J. G. Cruz, I. Kedziora Pawełand Lener, B. Lewandowski, C. Mazurek,

and M. Di Penta, “Best practices for validating research software prototypes-

MARKOS case study,” in Conf. eChallenges (e-2014), 2014, pp. 1–9.

[32] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,”

in Proc. 20th IEEE Int. Conf. Software Maintenance, 2004, pp. 350–359.

[33] C. De Roover, T. D’Hondt, J. Brichau, C. Noguera, and L. Duchien, “Behavioral

similarity matching using concrete source code templates in logic queries,” in Proc.

2007 ACM SIGPLAN Symp. Partial evaluation and semantics-based program

manipulation, 2007, pp. 92–101.

[34] I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS®: Program transformations for

practical scalable software evolution,” in Proc. 26th Int. Conf. Software Engineering,

2004, pp. 625–634.

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

55

[35] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection in source code by

frequent itemset techniques,” in Fourth IEEE Int. Workshop on Source Code Analysis

and Manipulation, 2004, pp. 128–135.

[36] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic token-based

code clone detection system for large scale source code,” IEEE Trans. Softw. Eng.,

vol. 28, no. 7, pp. 654–670, 2002.

[37] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-

based detection of code clones,” in Proc. 29th Int. Conf Software Engineering, 2007,

pp. 96–105.

[38] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design

defects detection and correction by example,” in 19th IEEE Int. Conf. Program

Comprehension, 2011, pp. 81–90.

[39] A. Stoianov and I. Sora, “Detecting patterns and antipatterns in software using Prolog

rules,” in Int. Joint Conf. Computational Cybernetics and Technical Informatics

(ICCC-CONTI 2010), 2010, pp. 253–258.

[40] C. Trubiani and A. Koziolek, “Detection and solution of software performance

antipatterns in palladio architectural models,” in ACM SIGSOFT Software Engineering

Notes, 2011, vol. 36, no. 5, pp. 19–30.

[41] K. Dhambri, H. Sahraoui, and P. Poulin, “Visual detection of design anomalies,” in

Proc. European Conf. Software Maintenance and Reengineering, CSMR, 2008, pp.

279–283.

[42] G. Szoke, C. Nagy, R. Ferenc, and T. Gyimóthy, “Designing and developing

automated refactoring transformations: An experience report,” in IEEE 23rd Int. Conf.

Software Analysis, Evolution, and Reengineering (SANER 2016), 2016, vol. 1, pp.

693–697.

[43] H. Kaur and P. J. Kaur, “A GUI based unit testing technique for antipattern

identification,” in 5th Int. Conf.-The Next Generation Information Technology Summit

(Confluence), 2014, pp. 779–782.

[44] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintainability defects

detection and correction: A multi-objective approach,” Autom. Softw. Eng., vol. 20, no.

1, pp. 47–79, 2013.

[45] A. Maiga et al., “Support vector machines for anti-pattern detection,” in Proc. 27th

IEEE/ACM Int. Conf. Automated Software Engineering (ASE), 2012, pp. 278–281.

[46] Z. Han, P. Gong, L. Zhang, J. Ling, and W. Huang, “Definition and detection of

control-flow anti-patterns in process models,” in IEEE 37th Annu Computer Software

and Applications Conf. Workshops (COMPSACW), 2013, pp. 433–438.

[47] Z. Ujhelyi et al., “Anti-pattern detection with model queries: A comparison of

approaches,” in IEEE Conf. Software Maintenance, Reengineering and Reverse

Engineering (CSMR-WCRE), 2014 Software Evolution Week, 2014, pp. 293–302.

[48] R. Fourati, N. Bouassida, and H. Ben Abdallah, “A metric-based approach for anti-

PJCIS (2017), Vol. 2, No. 2 : 37-56 A Systematic Review of the Approaches

56

pattern detection in UML designs,” in Computer and Information Science 2011,

Springer, 2011, pp. 17–33.

[49] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-patterns in search-

based program repair,” in Proc. 24th ACM SIGSOFT Int. Symposium Foundations of

Software Engineering, 2016, pp. 727–738.

[50] R. Morales, “Towards a framework for automatic correction of anti-patterns,” in IEEE

22nd Int. Conf. Software Analysis, Evolution and Reengineering (SANER), 2015, pp.

603–604.

[51] N. Moha, J. Rezgui, Y.-G. Guéhéneuc, P. Valtchev, and G. El Boussaidi, “Using FCA

to suggest refactoring to correct design defects,” in Concept Lattices and Their

Applications, Springer, 2008, pp. 269–275.

[52] M. T. Llano and R. Pooley, “UML specification and correction of object-oriented anti-

patterns,” in Fourth Int. Conf. Software Engineering Advances, 2009, pp. 39–44.

[53] D. K. Saini, L. A. Hadimani, and N. Gupta, “Software testing approach for detection

and correction of design defects in object-oriented software,” J. Comput., vol. 3, no. 4,

2011.

[54] N. Moha, “Detection and correction of design defects in object-oriented designs,” in

Companion to the 22nd ACM SIGPLAN Conf. Object-oriented Programming Systems

and Applications Companion, 2007, pp. 949–950.

[55] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, “A new family of

software anti-patterns: Linguistic anti-patterns,” in 17th European Conf. Software

Maintenance and Reengineering (CSMR 2013), 2013, pp. 187–196.

[56] Caprile and Tonella, “Restructuring program identifier names,” in Proc. Int. Conf.

Software Maintenance ICSM-94, 2000, pp. 97–107.

[57] F. Deisenbock and M. Pizka, “Concise and consistent naming,” in 13th Int. Workshop

on Program Comprehension (IWPC’05), 2005, pp. 97–106.

[58] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier names for

comprehension and memory,” Innov. Syst. Softw. Eng., vol. 3, no. 4, pp. 303–318,

2007.

[59] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a study of

identifiers,” in 14th IEEE Int. Conf. Program Comprehension (ICPC), 2006, pp. 3–12.

[60] E. Merlo, I. McAdam, and R. De Mori, “Feed-forward and recurrent neural networks

for source code informal information analysis,” J. Softw. Maint. Evol. Res. Pract., vol.

15, no. 4, pp. 205–244, 2003.

[61] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Modeling the evolution of

topics in source code histories,” in Proc. 8th Working Conf. Mining Software

Repositories, 2011, pp. 173–182.

