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Abstract 

 
Many problems in science and engineering field are modeled by Partial Differential 

equations (PDEs). Non-linear, reaction diffusion equation, Fisher’s equation, models different 
problems in ecology, biology and mass and heat transfer. This paper concerns with the 
development of meshless method of lines (MOL) for solving Fisher’s equation. This method is 
applied in two steps. In the first step, Space derivatives are approximated by different radial 
basis functions. It results in conversion of PDE to system of ordinary differential equations 
(ODEs) which are then solved by Runge Kutta method of order 4 (RK4) in the second step. 
Finally LL ,2  and root mean square (RMS) error norms are hired to check the behavior of 
the method. The proposed method is compared with some available methods in the literature.  

 
Keywords: Multi Quadric (MQ), Inverse Multi Quadric (IMQ), Gaussian (GA), 

Inverse Quadric (IQ), Runge Kutta method of order 4 (RK4). 
 

 

INTRODUCTION 
 
In applied mathematics and physics, nonlinear phenomena play an essential role. For 

PDEs field of nonlinear control problems are the most mathematically challenging in the 
association of distributed parameter systems. Fisher’s equation was first introduced by Fisher 
to model the advance of freak gene in an infinite domain and is nonlinear evolution equation 
[1]. Furthermore, Fisher’s equation has been used as a basis to model the spatial spread of 
gene in chemical wave propagation, branching Brownian motion process, flame propagation, 
nuclear reactor theory [2-5], spread of invasive [6] , bacteria [7] , epidemics[8], and many 
other disciplines. 
 
The Fisher’s equation is defined by  
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Where tshows the time and ),( x shows the position. A reactive coefficient  and 
diffusion coefficient D parameterized the reactive and diffusion process. 
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In this paper we have considered the following form of Fisher’s equation, 

.0)1(  uuuu xxt                                                                (2) 
Where  is an arbitrary constant. 

The exact solution of Eq. (2) is given in [2], 
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Many properties of Fisher’s equation as a typical nonlinear reaction diffusion system 

have been studied by many authors, including the singular property and the travelling wave 
behaviour [2, 9-12]. Excellence summaries of Fisher’s equation are provided by Kawahara & 
Tanaka [13], Baraznik & Tyson [14] and Larson [15]. The analytical study of Fisher’s 
equation by using Adomian decomposition method is discussed by Wazwaz & Gorguis [2]. 
For the generalized Fisher’s equation, the exact and explicit solitary wave solution has been 
presented by Wang [16]. The numerical solutions of Fisher equation were not present in the 
literature till 1947. First time Gazdag & Canosa [17], presented the numerical solution of 
Fisher’s equation with a pseudo-spectral approach. After that Fisher’s equation has been 
solved numerically by a lot of researchers. To discuss the numerical solution of Fisher 
equation, the implicit and explicit finite differences algorithms were presented by Twizell et 
al. [18] and Parekh & Puri [19]. Carey & Shen [20] used a least-squares finite element 
method. Comparison of nodal integral and non-standard finite schemes by Rizwan-Uddin 
[21] and Galerkin finite element method is proposed by Tang & Weber [22]. By using 
centered finite difference algorithm, the asymptotic boundary conditions are developed by 
Hagstrom and Keller [23]. A best finite-difference scheme for Fisher’s equation proposed by 
Mickens [24], a pseudo spectral method was proposed by Olmos and Shizgal [25], a moving 
mesh method is used by Qiu & Sloan [26]. Also by applying wavelet Galerkin method, 
Fisher’s equation is studied by Mittal et al. [27]. 

 
MOL is an efficient technique to find the numerical solution of PDEs. The main 

theme of this method is to discretize the space derivatives and the time derivatives remain 
continuous. The German mathematician Erich Rothe introduced MOL in 1930 [28]. He 
applied it to parabolic type equations, but it can be used in broad sense. MOL is considered as 
special case of FDM but it is more effective than FDM due to its accuracy and less 
computational cost. 

 
We first discretize the given PDE in space variable by approximating the spatial 

derivatives by RBF/FDM and then solve the system of ODEs by any ODE solver. In recent 
years, different PDEs are solved by MOL, including, burger’s type equation [29], generalized 
Kuramoto-Sivashinsky equation [30], KdV equation [31]. KdVequation for small time [32]. 
For stability and convergence of MOL see [33-35] . 
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FORMULATION OF METHOD OF LINES 

 
In this section we will find the numerical solution of Equation (2) by applying MOL. 

By using RBF, the problem domain will be discretized in space variable which will convert 
the given PDE into system of ODEs, which will be easily solved by using any appropriate 
ODE solver. In this work we will use RK4 method. 

 
RBF collocation 

 
This section is concerned with MOL-RBF interpolation. By using RBF we will 

interpolate the approximate solution to the problem.  
Let u~ be the RBF approximation to u , which denote solution of the given PDE. Let 

us divide the problem domain in n  nodes, nxxx ,,, 21  ,  in   where   represents the 
interior and   is the boundary of the domain. Also nxx ,1 , while 132 ,,, nxxx  . 
The RBF approximation of )(xu is given by, 





n

j
nnji kkkkxu

1
2211 ,)(~    

k)()(~ xxu T                                                                                    (4) 

Where  Tn xxxx )(,),(),()( 21   and   .,,, 21
T

nkkk k  
Here j  denotes the RBFs and jk  are the unknown constants. 

Let we denote approximate solution is at thj node by ju  i.e. jj uxu )(~ Then from Equation 
(4), 
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Which can be written in the matrix form as, 
,uΒ k                                                                                                (5) 
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In above equation matrixΒ is called the interpolation (or collocation) matrix and it 
consists of RBFs at nodes. 
From Equation (5), we have,  

uΒ 1k  
Putting this value in Equation (4), we get 

,)()(~ 1uΒ xxu T  
,)()(~ uΡ xxu                                                              (6) 

Here   ,)(,),(),()( 21
T

n xxxx    nuuu ,., 21 u and ,)()( 1 ΒP xx T  
The singularity of collocation matrix Β depends on the choice of RBF. For this 

purpose; choose the value of shape parameter c as large as possible to get large difference 
between at least two columns of Β . However this produces less accuracy to contrast with that 
of small values of c . But small value of c  causes ill-conditioning of collocation matrix. So 
the shape parameter has great effect on condition number [36]. The determination of best 
value of c  is still problem. There are many methods to find the best value of c . The most 
easy and popular is the brute force method in which Max-error is plotted for different values 
of c . The value of c  on which the least Max-error is appeared is considered as best value of 
shape parameter. This technique is applied to find the optimum value of c  by the authors in 
[30] and [31]. Different methods of finding optimal value of c  are given in [37-41]. 

 
Application of MOL-RBF to Fisher’s Equation Using RBF 

 

In this section, we will approximate the unknown solution (ݔ)ݑ as a linear 
combination of n  RBFs to find the numerical solution of Fisher’s equation by applying 
MOL. We consider Fisher’s equation, 

0)1(  uuuu xxt                                                                    (7) 
Where   is arbitrary constant, 
the initial condition is taken as, 

)()0,( xxu  ,bxa                                                                 (8) 
and the boundary conditions are, 
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Using Equation (6) to Equation (7), we get the following collocated form of Equation (7) 
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Then Equation (10) can be written as, 

,0)1(  UUUP
dt

dU
xx                                                  (11) 

We can write Equation. (11) in compact form as, 

),(UF
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dU                                                                               (12) 

Where  
).1()( UUUPUF xx                                                       (13) 

The initial condition can also be written as, 
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From the boundary conditions, 

),()(1 ttu  ).()( ttun                                                                (15) 
Now we will solve resulting system of ODEs (12) with initial conditions (14) by using RK4 
method. 
The RK4 algorithm for Equation (12) is 
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Here mU  is the approximate solution at thm  time level, t is the time step. 
 
 

RESULTS 
 

In this section we will give numerical example to show the accuracy of our method. 
We will compare our method with DQM. 
1.1 Test Problem 1 
We consider the Fisher's equation,                           

0)1(  uuuu xxt           (17) 
Where   is an arbitrary constant. 
The exact solution of Equation (17) is given by, 
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The initial condition and boundary conditions are, 
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Numerical calculation is performed over the interval ]1,0[]1,0[   with step size 
1.0h  and time step 001.0t , with .6  Different types of RBFs are used such as MQ, 

IMQ, GA and IQ. Table 2 is concerned with the error norms to assess the behavior of MOL, 
which are defined as follows: 
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Where u  and u  are exact and numerical solutions respectively. From Table 1 it can 

be easily observed that MQ, IMQ, and GA have more accurate results than IQ. We have 
taken the values of 2.2,4.1,1c  and 34.0  for MQ, IMQ, GA and IQ respectively. In Table 2, 
there is comparison of MOL and DQM and it shows that MQ, IMQ and GA results are more 
accurate than that of DQM whereas IQ has less accuracy than DQM. 

 
In this work, we have applied brute-force technique to find the best value of c . From 

Figure 1, we can see that the least Max-error for MQ is at 1.1c , Figure 2 shows that least 
Max-error for IMQ is at 4.1c . Similarly in Figure 3 one can see that least Max-error for 
GA occurs at  2.2c  and the Figure 4 represents that Max-error for IQ attains its minimum 
value at 34.0c . 

 
Now we highlight the Figures of comparison of numerical and exact solution. In 

Figure 5, graph of numerical solution falls nearly to that of exact solution. And same as the  
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result for the graph of IMQ and GA, In Figure 6 and 7 respectively, but the graph of IQ in 
Figure 8 is slightly different from others. 

 
Table 1: 2, LL and rmsL for different RBFs 

t RBF ࡸ ∞ࡸ૛ ࢙࢓࢘ࡸ 
0.1 MQ 2.6452E-07 1.3234E-07 1.3234E-07 

IMQ 3.5363E-07 2.1788E-07 2.1788E-07 
GA 7.5121E-07 2.8072E-07 2.8072E-07 
IQ 5.5756E-03 2.9324E-03 2.9324E-03 

0.2 
 
 
 

MQ 4.7441E-07 2.9961E-07 2.9961E-07 
IMQ 4.0007E-07 2.5327E-07 2.5327E-07 
GA 8.7103E-07 3.3578E-07 3.3578E-07 
IQ 2.2767E-02 1.1850E-02 1.1850E-02 

0.3 MQ 7.3297E-07 4.9349E-07 4.9349E-07 
IMQ 4.6189E-07 2.4497E-07 2.4497E-07 
GA 9.3713E-07 3.6373E-07 3.6373E-07 
IQ 5.3162E-02 3.4769E-02 3.4769E-02 

0.4 MQ 9.9249E-07 6.6783E-07 6.6783E-07 
IMQ 5.2276E-07 2.4321E-07 2.4321E-07 
GA 9.9070E-07 3.9942E-07 3.9942E-07 
IQ 8.8148E-02 6.0523E-02 6.0523E-02 

0.5 MQ 1.1806E-06 7.9318E-07 7.9318E-07 
IMQ 6.1118E-07 2.6904E-07 2.6904E-07 
GA 1.0535E-06 4.4895E-07 4.4895E-07 
IQ 1.1332E-01 7.8289E-01 7.8289E-01 

 
 

 
Figure 1: ࡸ∞ error norm for different values of ࢉ using MQ 
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Figure 2:  ࡸ∞ error norm for different values of ࢉ using IMQ 

 

 
 

Figure 3:  ࡸ∞ error norm for different values of ࢉ using GA 
 

 
 

Figure 4:  ࡸ∞ error norm for different values of ࢉ using IQ 
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Figure 5: Comparison of numerical and exact solution using MQ 
 

 
 

Figure 6: Comparison of numerical and exact solution using IMQ 
 

 
 

Figure 7: Comparison of numerical and exact solution using GA 
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Figure 8: Comparison of numerical and exact solution using IQ 
 
 

 

Table 2: Comparison of MOL RBF and DQM 
 

x t MQ 
c=0.8 

IMQ 
c=01 

GA 
c=4.5 

IQ 
c=0.01 

Exact 
Solution 

DQM 
[42] 

0.25 0.5 0.818389 0.818393 0.818399 0.826779 0.818393 0.81843 
1.0 0.982915 0.982919 0.982926 0.999993 0.982919 0.98292 
2.0 0.999881 0.999883 0.999889 1.000312 0.999883 0.99988 
5.0 0.999999 0.999999 1.000004 1.000338 1.000000 1.00000 

0.50 0.5 0.775800 0.775803 0.775811 0.769864 0.775803 0.77585 
1.0 0.978144 0.978147 0.978155 0.985615 0.978147 0.97815 
2.0 0.999849 0.999850 0.999857 1.000253 0.999850 0.99985 
5.0 0.999999 0.999999 1.000002 1.000290 1.000000 1.00000 

0.75 0.5 0.725819 0.725823 0.725832 0.697997 0.725824 0.72588 
1.0 0.972068 0.972071 0.972080 0.979299 0.972071 0.92208 
2.0 0.999806 0.999808 0.999815 1.000333 0.999808 0.99981 
5.0 1.000000 0.999999 1.000000 1.000386 1.000000 1.00000 

 
 

CONCLUSION 
 

In this paper, we implemented MOL over Fisher’s equation. Different types of RBFs 
are used to approximate the solution of the governing equation. Results show the impressive 
behavior of our method. We have compared our method with DQM and obtained more 
accurate results than DQM. 
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