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Abstract 
 

The paper is aimed at the safety assessment of intermediate and low level 

radioactive waste (LLRW) disposal facility. Now a days extensive research is going on to 

develop safety assessment methodologies for radioactive waste disposal facilities. For 

disposal of low level radioactive waste, near surface disposal facility is assumed the 

preferred option. Safety assessment is helpful to get public confidence. The main 

objective of disposal of radioactive waste is to protect the human health and the 

environment from its worse effects. Therefore, it is necessary to manage the radioactive 

waste safely. In this work, machine learning (ML) approaches of support vector 

regression (SVR), generalized regression neural network (GRNN), artificial neural 

network (ANN) and multiple linear regressions (MLR) have been applied for the 

modeling of different safety parameters of LLRW disposal facility. Simulations have 

been performed to model the distribution coefficients (Kd), leaching rates (𝜆𝑙), and 

retardation factors (Rf) of radionuclide present in the RW. Experimentations are 

conducted in Matlab environment. Percentage absolute difference is used to evaluate the 

performance of the proposed models. The best results have been achieved by SVR and 

GRNN models with correlation coefficients R=0.99812 and 0.94773 for Kd, respectively. 

The performance of ML models is compared with conventional linear regression (LR) 

methods. Experiments highlights that the proposed ML models provide better results 

compared to conventional LR methods. This study is useful for the development and 

safety assessments of our national future assessment of low level radioactive waste 

disposal facility. 
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coefficient, Retardation factor 
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INTRODUCTION 
 
The proper disposal of radioactive waste is a problem which needs to be 

addressed properly to avoid any serious consequences. One of the main reasons is to 

protect humans and environment from the hazardous radiations emitted from waste. We 

are dealing with low level radioactive waste (LLRW) generated from nuclear power 

plants, medicine and research[1]. For the disposal of LLRW near surface disposal 

facilities are used contrary to high level radioactive waste (HLRW) which is disposed 

deep within the ground. 
 

Theoretical methods use mathematical predictive models and these models are 

easy to simulate on computers. In this work, MLR, GRNN, ANN and SVR were 

simulated and the results are compared. 
 

Since we are concerned mainly to near surface disposal facilities in this paper, so 

there is a possibility that water can enter into the disposal area in accidental scenario[2]. 

Due to which radio nuclides will be released either into rocks or into cover soil. In case 

they are released into rocks, radio nuclides released from the facility will become part of 

the underground fresh water. Now this water can affect human beings either directly or 

indirectly. This contaminated water may be used for farming which will affect us 

directly. Indirectly this water used for farming will affect us by using eatables like milk, 

meat etc of animals. In case water is released to cover soil, local residents will obviously 

be affected directly[3].  
 

Distribution coefficient or partition coefficient is the ratio of the concentration of 

an element on a solid and the concentration in the liquid phase (water etc.) [4]. 
 

 
Adsorbed Concentration

Distribution coefficient
Dissolved Concentration

  (1) 

 

Retardation of the contaminant can be estimated using distribution coefficient Kd. 

Kd model is the simplest and robust model. Kd values are empirical and represent a very 

simplest model of sorption or attenuation on soil. In general all isotopes of an element 

have the same Kd value, because sorption is a chemical property which is not affected by 

atomic mass or nuclear emissions. Also Kd values are highly dependent on environmental 

factors such as pH, particle size distribution and temperature etc[5]. 

 

The retardation factor (Rf) is commonly used in transport models. It describes the 

chemical interaction  between the  contaminant and  geological  materials  (such as soil, 
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sediments, rocks, simply referred to as soils). Specifically, retardation factor indicates the 

rate at which contaminant is transported from one place to other [6]. 

 

 Higher the bulk density, higher is the retardation factor. For high adsorption 

coefficient, retardation coefficient is high. Similarly if water content is low, retardation 

factor is also low. 

𝑅𝑓 = 1 + 
𝜌𝑏𝐾𝑑

𝜃
 (2) 

where 

 

ρb= bulk density of medium (Kg/m3),  

Kd= distribution or partition coefficient (m3/Kg), 

θ= Total porosity of the medium.  

 

 The ratio of the amount of radio nuclides released from a given facility to the 

amount remaining in the waste is called leaching rate. We assume that leaching of radio 

nuclides (partitioned into the pore water) is due to the steady-state infiltration or drainage 

through the waste. Equation (3) can be used for leaching rate. 

 

 
( )

l

w b d

q

z K
 


 (3) 

where 

 

q = the rate of drainage of water through the waste forms (m/y), 

θw = the water filled porosity of the waste form , 

ρb = the bulk density of the waste form (kg/m3), 

Kd = the waste form distribution coefficient (m3/ kg), 

z = the height of the waste form (m). 

 

Materials and Methods 
 

Reduction and assessment of migration of radio nuclides present in waste is done 

by safety assessment of radioactive waste disposal facility. As safety assessment of 

radioactive waste is a very vast field, some safety parameters like distribution coefficient 

(Kd), retardation factor (Rf) and leaching rate (𝜆𝑙) are modelled in this paper. Different 

machine learning (ML) approaches like multiple linear regression (MLR), support vector  

regression (SVR), generalized regression neural networks (GRNN) & artificial neural 

networks (ANN) are used for future prediction of RW disposal facility.  
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Modeling of different safety parameters of low level or intermediate level waste is 

a problem because in nuclear power plants, medical and research centers, huge amount of 

radioactive waste (RW) is produced every year. It is essential to safely dispose this RW 

so that workers and other people can be protected. Disposal of RW is a very vast and 

multi-dimensional field. There are huge amount of radio nuclides present in the RW 

dumped in near surface disposal facilities. However in this paper radionuclide of our 

interest will be cesium (Cs) due to its concentration in the waste. Here in this paper a few 

safety parameters are modeled using different techniques. For modeling safety 

parameters like distribution coefficient Kd, retardation factor Rf and leaching rate 𝜆𝑙, 

techniques used in this paper are MLR, SVR, GRNN and ANN. These models will help 

in safety assessment and to assess sorption of radio nuclides from near surface disposal 

facilities. 
 

Our proposed model is of the following form: 
 

 ( ,  ,  ,   )Model f pH CEC SA Aqueous cesium  (4) 
 

A set of known Kd values for cesium taken from the literature are analyzed 

considering it to be output parameter while other four parameters are considered to be 

input parameters. This cesium data set included 176 cesium Kd values. Two separate data 

sets were compiled. The first one included both soils and pure mineral phases. It contains 

176 Kd values. The lowest Kd value is 0.6 ml/g while the largest Kd value is 52,000 ml/g. 

The average cesium Kd value is 2635 ± 530 ml/g. The second data set shown contain data 

which include only soil studies, that is, data from pure mineral phases and rocks were 

eliminated from the data set. This second data set contains 57 Kd values [7]. Statistics 

were also applied on this data set. These four methods were applied to predict output 

parameter Kd from four input parameters pH, Cation exchange capacity (CEC) in 

meq/100g, surface area (SA) in m2/g aqueous cesium in µM. Matlab codes were written 

in Matlab 2013 [8] to model these parameters. 
 

In this paper machine learning approaches like MLR, GRNN, ANN and SVR are 

used to model safety parameters [9]. The safety parameters are distribution coefficient Kd, 

retardation factor Rf, leaching rate 𝜆𝑙. Researchers use ML approaches to make decisions 

for their problems. In the literature, there are many techniques but machine learning 

techniques are significant in a way that they can be applied to solve a large variety of 

problems. ML approaches learn from experience [10]. 
 

Matlab and matlab toolboxes were used for modeling Kd values [8]. A set of 

known Kd values for cesium taken from the literature are analyzed considering it to be 

output parameter, while other four parameters (i.e. pH,  CEC,  SA,  aqueous cesium) are  

  



PJCIS (2016), Vol. 1, No. 1 : 57-71                                                      Modeling of Safety Parameters 
 
 

 61 

considered to be input parameters. First the four techniques were used to model Kd values 

taken from the literature. Then these modeled values of Kds were used to find values of 

retardation factor Rf and leaching rate 𝜆𝑙 using Equations 2 and 3. Other values of 

parameters like bulk density of medium (Kg/m3) ρb, total porosity of the medium θ, the 

rate of drainage of water through the waste forms (m/y) q, the water filled porosity of the 

waste form θw, the height of the waste form (m) z, were taken from literature [2]. 

 

 In this paper, our ML based methodology comprises three steps. First step is data 

set partitioning, in the second step models are constructed and in the last step models are 

tested. Performance is measured by finding percentage absolute difference (PAD) as: 

 

exp

exp

% 100
predd d

d

K K
PAD

K


                                         (5) 

In our case, out of 55 samples, for training 39 samples were selected, while for validation 

and testing 8 samples were selected respectively. Any machine learning training process 

consists of learning domain, training set, learning system and finally testing. Keeping 

these factors in mind, machine learning models can be developed [11].The four 

techniques used are discussed as below: 

 

Multiple Linear Regression (MLR) 
 

In this paper, MLR is used to predict the value of distribution coefficient Kd from 

a set of four predictors i.e. pH, Cation exchange capacity (CEC) in meq/100g, surface 

area (SA) in m2/g, aqueous cesium in µM. In other words the four input parameters are 

pH, CEC, SA and aqueous cesium and the output parameter is distribution coefficient Kd. 

A matlab code was written for the prediction of Kd out of these four parameters.  

 

Generalized Regression Neural Network (GRNN) 
 

This is basically a neural network based function approximation or function 

estimation algorithm. It predicts the output of a given input data. In principle, neural 

network needs a training data to train itself. Training data should contain input-output 

mapping. Now if the network is trained with the training data set and a new testing data 

set is fed, it will accordingly give the output or predict the result. 

 

The main advantage of GRNN models is that it estimates the appropriate 

regression model from the given data. The network is over-trained for low value of 

Gaussian  function parameter σ, and  the prediction error would be higher for evaluation  
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data. In a similar way, for large value of σ, the network remains under-trained and the 

prediction error would increase for training data. 

 

Training procedure involves determination of the optimum value of spread 

constant σ. Best practice is that find the position where the Mean Squared Error (MSE) is 

minimum. First divide the whole training sample into two parts, training sample and test 

sample. Apply GRNN on the test data based on training data and find out the MSE for 

different [11, 12]. 
 

Artificial Neural Network (ANN) 
 

ANN uses generalized mathematical models of human or neural biology. A 

general mathematical model of simple neuron is shown in figure 1. A simple neuron has 

many inputs but a single output. ANN model also needs a training sample set with 

desired output values. Back-propagation technique has been employed. Neural Network 

Toolbox of Matlab is employed for the training[8]. This toolbox is a built in set of 

MATLAB functions that provide an environment to develop not only feed forward neural 

networks but also recurrent neural networks. For optimal network performance, ten 

neurons are used in the hidden layer. Levenberg–Marquardt algorithm is used for weights 

adjustment. Initial weights and bias values are randomly selected. Tansig and pure linear 

activation functions are used for hidden and output layers. The values of four parameters 

and the desired Kd value of each sample point are fed as the network input [13]. 

 

Support Vector Regression (SVR) 
 

Support vector machine is a practical learning method based on statistical learning 

theory. Like ANN, SVR is also first trained on training data samples and then it is tested 

for those data samples not present in the training dataset[12]. In using SVR methodology 

first data set is generated. After data set generation, parameters are optimized on training 

dataset. Then optimized model is validated using validation dataset and finally optimized 

model is validated using verification dataset. For developing SVR machine the 

parameters initialized are type and width of the kernel, Trade–off parameter, C and ε–

insensitivity zone 
 

Results 
 

Correlation coefficients for the parameters are determined for both types of data 

sets. The parameter which have largest correlation coefficient with cesium Kd was  

CEC  (R2=0.3364).  Similarly the correlation coefficients of other parameters  i.e  Ph and  
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aqueous Cs with cesium Kd values are 0.0356 and 0.0989 respectively. The correlation 

coefficient between parameter aqueous Cs and Cs Kd values is poor. This is due to the 

fact that this parameter contains concentration of the solution before and after contact 

with the soils. The correlation coefficients between the chosen input parameter CEC and 

Kd is shown in Figure 1. The correlation coefficient R values and corresponding equations 

of all four input parameters and Kd is shown in Table 1. 

 

 

Figure 1: Relationship between Cs Kd values and CEC. 
 

Table 1: Input parameter correlation coefficient values and corresponding Kd equations. 

 

Sr. No. Input Parameter R2 value Equation 

1 CEC (meq/100g) 0.336 Kd = 0.5051 CEC + 2.457 

2 SA (m2/g) 0.176 Kd = 0.5679 SA + 1.841 

3 Aqueous cesium (µm) 0.102 Kd= -0.1354 AqCs + 2.0512 

4 pH 0.036 Kd= 1.6236 pH + 1.0251 

 

  

Kd = 0.5051CEC + 2.457

R=0.58
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Kd Prediction Using MLR 
 

Four independent variables (pH, CEC, SA, Aq Cs) are the input parameters and 

Kd is the corresponding output variable. The coefficients of independent variables are 

computed under ordinary least squares criterion, using training data, as follows: 

 1 2 3 4 8107.9 910.7 129.8 3.1 3.2 MLR

dK X X X X      (6) 

where 

X1=pH, X2= Cation exchange capacity (CEC), X3= surface area (SA) and X4= Aqueous 

cesium (Aq Cs). i.e. intercept b0= 8107.9 

Regression coefficients are b1= -910.7, b2= 129.8, b3= 3.1, b4= -3.2 

Linear correlation between theoretical and predicted Kd is shown in Figure 2.  

 
 

 

Figure 2: Linear correlation graph between experimental and predicted Kd for MLR 
 

Kd Prediction Using GRNN 
 

For GRNN, Gaussian function parameter σ is tuned and the best results of this 

network are obtained by finding the optimal spread values of σ. In our case σ =0.1025, 

0.0275 for four parameters, respectively. Figure 3 shows the linear correlation graph 

between the two variables. 
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.  
Figure 3: Linear correlation graph between experimental and predicted Kd for GRNN. 

 

Kd Prediction Using ANN 
 

Neural Network Toolbox of Matlab [8] is employed for the training. For optimal 

network performance, ten neurons are used in the hidden layer. Predicted Kd is shown in 

Figure 4. 
 

Kd Prediction Using SVR 
 

Gaussian Kernel function is employed for this problem. To find the optimal 

values of these parameters, selected ranges for these three parameters are as: C=[80,120], 

σ=[0.000001,0.1] and ε = [6, 1.8]. The combination for which the average PAD value is 

minimum for both the training and validation set is chosen to be optimal. The optimal 

values for the trade-off parameter C, the kernel width σ and ε–insensitivity zone are 

found to be 100, 1.7255 and 1.0 x 10-6 respectively in our case. The correlation 

coefficient in this case is 0.99812. 
 

A comparison of PAD values is given in Table 2. The performance comparison in 

terms of correlation coefficient is shown in Table 3. 
 

Now using these predicted Kd values, two other parameters i.e. retardation factor 

Rf and leaching rate of radio nuclides are modeled. Using Equation (2) retardation factor 

is calculated. The values of bulk density ρb and total porosity θ of the medium are taken 

from the literature. The graph between Kd and Rf is shown in Figure 5. 
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Figure 4: Linear correlation graph between experimental and predicted Kd for ANN 

 

Similarly Equation (3) is used to calculate leaching rate 𝜆𝑙. The values of rate of 

drainage of water q, water filled porosity of waste 𝜃𝑤, bulk density of waste 𝜌𝑏 and height 

of waste form z is taken from the literature. The graph between Kd and leaching rate 𝜆𝑙 is 

shown in Figure 6. 
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Table 2: Comparison of ML approaches 

 

PAD for SVR (%) PAD for GRNN (%) PAD for ANN (%) PAD for MLR (%) 

1.333 9.891 12.916 18.374 

12.500 9.903 15.743 16.851 

1.818 9.892 14.146 15.607 

0.487 9.890 9.090 13.143 

1.428 9.891 15.405 15.805 

1.818 9.892 9.146 9.324 

7.142 9.897 15.609 9.148 

8.438 9.899 14.052 15.515 

0.243 9.890 13.792 14.590 

6.153 9.896 12.209 19.062 

0.090 9.890 13.128 11.959 

6.079 9.896 11.916 12.871 

1.838 9.892 14.542 15.656 

1.845 9.892 14.675 12.205 

2.103 9.892 7.913 17.346 

1.956 9.892 4.913 19.839 

 
Table 3: Performance comparison of ML approaches in terms of correlation coefficient 

 

Input Dataset SVR Model GRNN Model ANN Model SVR Model 

Train. Data 0.998 0.947 0.835 0.761 

Valid. Data 0.983 0.950 0.919 0.741 

Test. Data 0.975 0.942 0.905 0.752 

Mean R-value 0.985 0.946 0.887 0.751 
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Figure 5: Graph between Distribution coefficient and Retardation factor 

 

Figure 6: Graph between distribution coefficient (Kd) and leaching rate (λl) 
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Discussion 

 
The correlation coefficient value of each parameter with Kd is calculated to 

determine which parameter has the largest correlation coefficient. The correlation 

coefficients of parameters CEC, SA, pH and aqueous cesium with Kd was 0.58, 0.42, 0.19 

and 0.32 respectively. Hence the parameter with the largest correlation coefficient with 

cesium Kd was CEC (R = 0.58).  

 

Multiple linear regression (MLR), generalized regression neural network 

(GRNN), artificial neural network (ANN) and support vector regression (SVR) are used 

to predict Kd and results obtained from these methods are compared. Correlation 

coefficient for these machine learning approaches MLR, GRNN, ANN and SVR are 

0.76158, 0.94773, 0.84916, and 0.99812, respectively. Thus the results obtained from 

SVR and GRNN are better than other two approaches. The correlation coefficients for 

SVR and GRNN are 0.99812 and 0.94773 respectively. 

Similarly Performance is measured by finding percentage absolute difference (PAD) as 

follows: 

 

    SVR GRNN ANN MLRPAD PAD PAD PAD                                (7) 
 

 
 

 

After modeling Kd values using different machine learning approaches, the results 

of best approach is taken which in our case is that of SVR for which R=0.99812. These 

Kd values are plotted against retardation factor (Rf). The results are shown in Figure 5, 

which shows a smooth variation between Kd and Rf. The values of Kd are constant for a 

given range of Rf values but at some points some peaks are observed which shows that at 

these points one must be careful in selecting these Kd values. For example in Figure 5, the 

value of retardation factor is constant in the range of 0.308 up to 13.022 but at points 

0.307 and 0.204 there is a peak showing abnormal variation of Rf with Kd. 

 

In a similar way, Kd values are also plotted against leaching rate and the results 

are shown in Figure 6. These graphs also shows smooth variation between Kd and Rf but 

at some particular points there are peaks showing abnormal behavior. 
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Conclusion 
 

Four different models are used for modeling Kd values in this work and their 

performance is tested using % PAD and coefficient of performance R. The best results 

have been achieved by SVR and GRNN models with correlation coefficients R=0.99812 

and 0.94773 for Kd, respectively. Predicted Kd values are then plotted against retardation 

factor and leaching rate, which shows smooth variation with Kd except some particular 

points. So we should avoid taking those Kd values at those particular points. 

 

Recommendations and Future Work 
 
In future distribution coefficient Kd, retardation factor Rf and leaching rate 𝜆𝑙 

prediction can be modelled for other radionuclides against different disposal concepts. 

This study could be used for development of radionuclides transport models in different 

media. This study will also integrate with entire safety assessment activities of near 

surface disposal facilities. 
 

REFERENCES 
 

[1] R. H. Little, et al., "Assessment of radioactive and non-radioactive contaminants found in 

low level radioactive waste streams," in Proc. Waste Manag. Conf., Tucson, AZ, United 

States, 2003. 

[2] IAEA, "Safety assessment methodologies for near surface disposal facilities: Results of a 

co-ordinated research project," IAEA, Vienna2004. 

[3] E. Tolentino and C. C. O. d. Tello, "An overview of technical requirements on durable 

concrete production for near surface disposal facilities for radioactive wastes," in Proc. 

INAC 2013 Int. Nucl. Atl. Conf., Recife, PE, Brazil, 2013. 

[4] S. C. Sheppard, et al., Solid/liquid partition coefficients (Kd) and plant/soil concentration 

ratios (CR) for selected soils, tills and sediments at Forsmark, 1st ed.: Swedish Nuclear 

Fuel and Waste Management Company, 2011. 

[5] M. Bragea, et al., "Influence of distribution coefficients on the transfer of radionuclides 

from water to geological formation," Chem. Bull. Politehnica Univ. Timisoara, vol. 53, 

pp. 1-2, 2008. 

[6] S. A. Adeleye, et al., "Sorption of caesium, strontium and europium ions on clay 

minerals," J. Mater. Sci., vol. 29, pp. 954-958, 1994. 

[7] K. M. Krupka, et al., "Review of geochemistry and available Kd values, for cadmium, 

cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and 

uranium," in Understanding Variation in Partition Coefficient, Kd, Values vol. II, 1999. 

[8] MatLab. Natick, Massachusetts, United States: The MathWorks Inc., 2013. 

  



PJCIS (2016), Vol. 1, No. 1 : 57-71                                                      Modeling of Safety Parameters 
 
 

 71 

 

[9] S. Kwon and W. J. Cho, "A sensitivity analysis of design parameters of an underground 

radioactive waste repository using a backpropagation neural network," J. Korean Soc. 

Rock Mech., vol. 19, pp. 203-212, 2009. 

[10] F. L. d. Lemos, et al., "Uncertainty / sensitivity methodologies for safety assessments of 

low-level waste disposal facilities," in Waste Manag. Conf., 1999. 

[11] A. Majid, et al., "Predicting lattice constant of complex cubic perovskites using 

computational intelligence," Comput. Mater. Sci., vol. 50, pp. 1879-1888, 2011. 

[12] A. Majid, et al., "Combination of support vector machines using genetic programming," 

Int. J. Hybrid Intell. Syst., vol. 3, pp. 109-125, 2006. 

[13] A. Ceguerra and I. Koprinska, "Automatic fingerprint verification using neural 

networks," in Proc. ICANN 2002: Int. Conf. Artif. Neural Netw., Berlin, Heidelberg, 

2002, pp. 1281-1286. 


