Please use this identifier to cite or link to this item: http://localhost:80/xmlui/handle/123456789/13751
Title: NON-POLYNOMIAL CUBIC SPLINE APPROACH FOR NUMERICAL APPROXIMATION OF SECOND ORDER LINEAR KLEIN-GORDON EQUATION
Authors: Hakeem, A
Rehman, S
Pervaiz, A
Iqbal, M.J
Keywords: Non-polynomial cubic spline technique
Finite difference approximations
System of partial differential equations
Second order linear Klein-Gordon equation
Issue Date: 9-Dec-2015
Publisher: Lahore:Pakistan Association for the Advancement of Science
Citation: Hakeem, A., Rehman, S., Pervaiz, A., & Iqbal, M. J. (2015). NON-POLYNOMIAL CUBIC SPLINE APPROACH FOR NUMERICAL APPROXIMATION OF SECOND ORDER LINEAR KLEIN-GORDON EQUATION. Pakistan Journal of Science, 67(4).
Abstract: Most of the fundamental theories and mathematical models of engineering and physical sciences are expressed in terms of partial differential equations (PDEs). Several studies were carried out for the numerical approximation of the second order linear Klein-Gordon equation. This study constructed a new numerical technique for the numerical approximation of second order linear Klein-Gordon equation. The new constructed scheme was based on employing non-polynomial cubic spline method (NPCSM). The second order time derivatives involved in the linear Klein-Gordon equation were decomposed into the first order derivatives. The decomposition generated a linear system of PDEs, where the first order time derivatives were approximated by the central finite differences of. Three test problems were considered for the numerical illustration of the developed scheme. For different values of spatial displacement , step size , and time step , the developed numerical technique produced encouraging results which were very much close to the analytical solution. For , and , the best observed accuracy was close to the machine precision
URI: http://142.54.178.187:9060/xmlui/handle/123456789/13751
ISSN: 2411-0930
Appears in Collections:Issue 4

Files in This Item:
File Description SizeFormat 
PJS-297-5431.htm135 BHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.