DSpace logo

Please use this identifier to cite or link to this item: http://142.54.178.187:9060/xmlui/handle/123456789/13975
Title: BREEDING SYSTEM AND POLLINATION BIOLOGY OF PAEONIA DELAVAYI (PEAONIACEAE), AN ENDANGERED PLANT IN THE SOUTHWEST OF CHINA
Authors: LI, KUI
ZHENG, BAOQIANG
WANG, YAN
ZHOU, LIN
Keywords: Ants
Beetles
Bees
Endangered plant
Flowering time
Breeding system
Paeonia delavayi
Pollination Biology
P/O ratio
Stigma receptivity.
Issue Date: 12-Oct-2014
Publisher: Karachi:Pakistan Journal of Botany, Botanical Garden, University of Karachi
Citation: Li, K., Zheng, B., Wang, Y., & Zhou, L. (2014). Breeding system and pollination biology of Paeonia delavayi (Peaoniaceae), an endangered plant in the southwest of China. Pakistan Journal of Botany, 46(5), 1631-1642.
Abstract: Breeding system and pollination biology of Paeonia delavayi (Peaoniaceae) from Shangri-La, Yunnan Province, southwest of China were studied. Flowering phenologies and flower visitors were observed or collected from 2008 to 2011. The pollen viability, stigma receptivity and pollination efficiency of different visitors were detected and tested. The florescence lasted for 6-9d in a single flower from mid-May to late June. A high percentage of flower damage promoted early anther dehiscence. Flowers started disseminating pollen at 1-2 d after flowering, and lasted for 5-6 d. Pollen viability could be preserved for more than 10 d at normal temperature. High seed rate from the stigma was observed at 1 d before flowering to 3d after flowering, and the dissemination hysteresis was defined as protogyny. The P/O ratios were 6,124 to 9,713:1, suggesting that the larger quantity of pollen to increased the seed setting rate. Three species of bees, eight species of beetles, seven species of syrphid flies, four species of ants, and three species of butterflies were observed on the flowers. P. delavayi rewarded to the visitors by releasing fragrance, providing pollen and nectar. On the bodies of the visitors under stereomicroscope and scanning electron microscope (SEM), much pollen from the plants of similar flowering period inner community were found which indicated that these incompatible visitors were not species-specific pollinators. The bagging experiments showed that P. delavayi was selfincompatible and no apomixes. Anemophily only played a minor role in the fertilization. A few seeds with poor plumpness can be produced by geitonogamy. Seed setting rate of artificial xenogamy was higher than natural pollination. Artificial control of the visitors’ species showed bees being the most important pollinators. Beetles and ants participated in pollination to some extent and were unstable. Syrphid flies and butterflies were very unreliable with low pollination efficiency. Reproductive success depended largely on cross-pollination assisted by pollinator activities, especially the bees.
URI: http://142.54.178.187:9060/xmlui/handle/123456789/13975
ISSN: 2070-3368
Appears in Collections:Issue 05

Files in This Item:
File Description SizeFormat 
archives2.php?vol=46&iss=5&yea=2014.htm133 BHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.