DSpace logo

Please use this identifier to cite or link to this item: http://142.54.178.187:9060/xmlui/handle/123456789/19950
Title: Study of Co (II) and Cr (VI) Adsorption from Aqueous Solution by CaCO³
Authors: FRANCISCO GRANADOS-CORREA
ELIZABETH GARCÍA ALCÁNTARA
Keywords: Purification
Adsorption
Optimal conditions
Crystalline
Radushkevich Isotherms
Issue Date: 6-Aug-2013
Publisher: HEJ Research Institute of Chemistry, University of Karachi, Karachi.
Citation: Correa, F. G., Becerril, J. J., & Alcantara, E. G. (2013). Study of Co (II) and Cr (VI) Adsorption from Aqueous Solution by CaCO/sub 3. Journal of the chemical society of Pakistan, 35(4), 1088-1095.
Abstract: Calcium carbonate was synthesized, characterized, and utilized in water purification. The adsorption of Co(II) and Cr(VI) ions from aqueous solutions in CaCO₃ was studied as a function of different optimal conditions, such as contact time, initial metal ion concentration and temperature, at fixed solid/solution rations by using batch adsorption experiments. Characterization studies confirmed that synthesized CaCO₃ is crystalline with a high phase purity and specific surface area of 9.68 m2/g. The kinetic processes of the systems were described in order to provide a more clear interpretation of the rate of adsorption mechanism. Langmuir, Freundlich and Dubinin-Radushkevich isotherms were used as the model adsorption equilibrium data. The maximum amounts (qmax) of Co(II) and Cr(VI) adsorbed in CaCO₃ were 2.29 and 1.06 x 10-2 mg/g, respectively. The pseudo-second order kinetic model was found to better fit the experimental data measured for both metallic ions. The adsorption processes of both systems were adjusted by the Freundlich isotherm. The adsorption energies calculated from Dubinin-Radushkevich isotherm show that the adsorption processes were physical in nature. Based on the thermodynamic data of ΔH°, ΔS° and ΔG obtained, it can be concluded that the processes of Co(II) and Cr(VI) ion adsorption in CaCO₃, were endothermic, spontaneous, and are the result of physical adsorption process. These features make the CaCO₃ a potential adsorbent for both Co(II) and Cr(VI) adsorption from wastewater
URI: http://142.54.178.187:9060/xmlui/handle/123456789/19950
ISSN: 0253-5106
Appears in Collections:Issue 04



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.