Please use this identifier to cite or link to this item: http://localhost:80/xmlui/handle/123456789/908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSujatha, G-
dc.contributor.authorSomeswara Rao, Dr Chinta-
dc.contributor.authorSrinivasa Rao, T-
dc.date.accessioned2019-11-05T09:41:31Z-
dc.date.available2019-11-05T09:41:31Z-
dc.date.issued2019-09-20-
dc.identifier.issn1819-6608-
dc.identifier.urihttp://142.54.178.187:9060/xmlui/handle/123456789/908-
dc.description.abstractThe ultimate objective of this system is to predict the variation of humidity in the weather over a given period. The weather condition at any instance is described by using different kinds of variables. Out of these variables, significant variables only are used in the weather prediction process. The selection of such variables depends strongly on the location. The existing weather condition parameters are used to fit a model and by using the machine learning techniques and extrapolating the information, the future variations in the parameters are analyzed.en_US
dc.language.isoen_USen_US
dc.publisherAsian Research Publishing Networken_US
dc.subjectEngineering and Technologyen_US
dc.subjectPrediction of Humidityen_US
dc.subjectWeatheren_US
dc.subjectLogistic Regressionen_US
dc.subjectDecision Treeen_US
dc.subjectNaive Bayesianen_US
dc.subjectSupport Vector Machineen_US
dc.subjectRandon Forst Classifiersen_US
dc.titlePREDICTION OF HUMIDITY IN WEATHER USING LOGISTIC REGRESSION, DECISION TREE, NEAREST NEIGHBOURS, NAIVE BAYESIAN, SUPPORT VECTOR MACHINE AND RANDOM FOREST CLASSIFIERSen_US
dc.typeArticleen_US
Appears in Collections:Journals

Files in This Item:
File Description SizeFormat 
jeas_0919_7916.htm146 BHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.